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Abstract

■ Language is composed of small building blocks, which com-
bine to form larger meaningful structures. To understand lan-
guage, we must process, track, and concatenate these
building blocks into larger linguistic units as speech unfolds
over time. An influential idea is that phase-locking of neural os-
cillations across different levels of linguistic structure provides a
mechanism for this process. Building on this framework, the
goal of the current study was to determine whether neural
phase-locking occurs more robustly to novel linguistic items
that are successfully learned and encoded into memory, com-
pared to items that are not learned. Participants listened to a
continuous speech stream composed of repeating nonsense

words while their EEG was recorded and then performed a rec-
ognition test on the component words. Neural phase-locking to
individual words during the learning period strongly predicted
the strength of subsequent word knowledge, suggesting that
neural phase-locking indexes the subjective perception of spe-
cific linguistic items during real-time language learning. These
findings support neural oscillatory models of language, demon-
strating that words that are successfully perceived as functional
units are tracked by oscillatory activity at the matching word
rate. In contrast, words that are not learned are processed
merely as a sequence of unrelated syllables and thus not
tracked by corresponding word-rate oscillations. ■

INTRODUCTION

A hallmark of human language is that it is composed of
building blocks, which combine hierarchically to form an
infinite number of meaningful expressions. For example,
phonemes are combined into syllables, which in turn
form words, then phrases, and, finally, full sentences.
During speech comprehension, the brain must simulta-
neously track and concatenate these different linguistic
structures across time. Recent evidence suggests that this
task may be accomplished through phase-locking of en-
dogenous neural oscillations to linguistic units unfolding
at different timescales (Gross et al., 2013; Giraud &
Poeppel, 2012; Peelle & Davis, 2012). Neural phase-
locking is established by demonstrating a consistent
phase lag between recorded neural responses and some
sort of external stimulus, as measured over time, over tri-
als, or over participants (Peelle & Davis, 2012). According
to several prominent models (Giraud & Poeppel, 2012;
Peelle & Davis, 2012), ongoing neural oscillations
phase-lock to linguistic segments occurring at different
rates, and coupling between phase-locked signals at slow
and faster frequencies supports the integration of smaller
linguistic elements into larger units. The alignment of
neural oscillations with a periodic or quasiperiodic stim-
ulus stream has also been described as “neural tracking”

or “neural entrainment” (Ding, Melloni, Zhang, Tian, &
Poeppel, 2016; Peelle & Davis, 2012) and is a general
phenomenon that also occurs to nonlinguistic stimuli.

Importantly, neural tracking of slow auditory fluctua-
tions (< 10 Hz) does not merely reflect low-level acoustic
features of a stimulus but is sensitive to listeners’ abstract
knowledge and subjective perceptions of a stimulus, as
guided, for example, by imagined rhythms (Nozaradan,
Peretz, & Keller, 2016; Nozaradan, Peretz, Missal, &
Mouraux, 2011) or syntactic rules (e.g., Ding et al.,
2016, 2017). For instance, Ding et al. (2016, 2017) dem-
onstrated that sequences of monosyllabic words, hierar-
chically organized into phrases and sentences, elicit
spectral magnetoencephalography (MEG)/EEG peaks at
frequencies corresponding to syllable, word, and phrase
presentation rates. Critically, phrasal and word peaks
were observed only when sentences were presented in
language known to participants, and not an unknown for-
eign language, indicating that neural tracking of higher-
level units depends on language-specific knowledge.

Neural tracking of linguistic structures also emerges
during language learning, reflecting the moment-by-
moment acquisition of new linguistic representations.
Getz, Ding, Newport, and Poeppel (2018) recorded
learners’ MEG while they listened to a miniature artificial
language that contained embedded phrases made up of
words presented at an isochronous rate. Within 3.5 minWestern University, London, ON, Canada
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of exposure, learners showed a robust spectral peak in
MEG power at the phrase structure rate, reflecting
phrase-level tracking. We found similar results in two re-
cent statistical learning studies (Batterink & Paller, 2017,
2019), in which participants were exposed to an isochro-
nous artificial speech stream composed of repeating tri-
syllabic nonsense words, concatenated together without
pauses (e.g., tupirogolabu…). In both studies, neural
phase-locking to the hidden component words increased
over the exposure period and predicted performance on
an implicit RT-based measure of statistical word knowl-
edge. Finally, Buiatti, Peña, and Dehaene-Lambertz
(2009) also found neural tracking of trisyllabic repeating
“AXC” pseudowords with nonadjacent dependencies, al-
though only when words were cued by subliminal 25-
msec pauses; this trisyllabic spectral EEG response also
correlated with the number of correctly reported words.
Taken together, these results indicate that neural track-
ing of embedded, novel linguistic structures emerges
during the learning process and predicts subsequent lin-
guistic knowledge at the behavioral level.

Notably, all of the above studies follow a “frequency-
tagging” approach: The experimental stimuli are present-
ed at a steady, isochronous rate, which drives the neural
population that codes for the stimulus to oscillate at the
same rate. Thus, clear peaks in the frequency spectrum
of the recorded neural signal can be detected at the stim-
ulus presentation frequency, providing a “frequency tag”
to identify the associated brain response. Although this
approach offers an excellent signal-to-noise ratio relative
to classical ERP analysis, it requires averaging the neural
signal across continuous stimulation blocks, precluding
the isolation of neural responses to individual items
(e.g., tupiro vs. golabu; from here on, “item” refers to
the combined collection of individual instances of the
same word or linguistic unit, at the single participant lev-
el). Thus, these past studies are unable to address wheth-
er the neural tracking of these isochronous linguistic
structures reflects the specific learning of individual items
in the artificial language or whether this rhythmic neural
response primarily reflects more general individual differ-
ences in statistical learning ability. Disentangling these
two possibilities would provide novel and important in-
sight into the functional significance of neural phase-
locking responses during language learning. Below, I
elaborate further on each of these two possibilities in
turn.

According to the first possibility, neural phase-locking
during language learning may directly reflect the discov-
ery, perception, and encoding of individual linguistic
items (e.g., a word in speech). An individual item that
is successfully learned should be perceived and catego-
rized as a relevant linguistic segment rather than as an
unrelated sequence of syllables and should be represent-
ed by an underlying neural population that codes for
this item as a meaningful chunk. Thus, better-learned
items should elicit stronger neural phase-locking at the

corresponding presentation rate. In contrast, an indi-
vidual item that has not been learned would be encoded
and represented only at the syllabic level, eliciting phase-
locking at the syllable rate but not at the word rate.
Under this scenario, the previous findings that better
learners show higher neural entrainment over the learn-
ing period (Batterink & Paller, 2017, 2019; Getz et al.,
2018; Buiatti et al., 2009) would be driven by these
learners’ successful discovery of more total items in the
language and/or their stronger representations for each
item.
A second, alternative possibility is that neural tracking

of rhythmic linguistic structures is not sensitive to item-
level differences in learning but is primarily driven by dif-
ferences at the individual level. To illustrate, the neural
entrainment response observed in previous studies
(Batterink & Paller, 2017, 2019; Getz et al., 2018; Buiatti
et al., 2009) may index an individual’s general sensitivity
to rhythmic temporal patterns, which could represent a
stable individual trait that in turn predicts statistical learn-
ing ability. In line with this idea, it has been shown that
stronger endogenous neural entrainment at the beat fre-
quency to auditory rhythms is associated with superior
temporal prediction abilities (Nozaradan et al., 2016).
Another recent study found that individuals vary distinctly
in their sensitivity to external patterns, as assessed
by whether they spontaneously synchronize their own
speech to an isochronous speech rhythm (Assaneo et al.,
2019). This individual predisposition predicts statistical
learning performance and also correlates with neuroana-
tomical and neurophysiological outcomes, suggesting that
it is a stable individual trait. Given that previous studies
showing a link between neural entrainment and statistical
language learning all presented isochronous stimuli
(Batterink & Paller, 2017, 2019; Getz et al., 2018; Buiatti
et al., 2009), better learners may be those individuals
who are generally more sensitive to temporal rhythms
orwhodemonstrateahighdegreeof spontaneoussynchro-
nizationtoexternal stimuli.Thesetraitscouldbothproduce
ahigherneuralentrainment responseand lead tobetter sta-
tistical learning performance on subsequent tests. Under
this hypothesis, the contribution of individual items to var-
iance in the neural tracking response would be negligible,
and the relationshipbetweenneural entrainment andword
learning would be driven primarily by stable individual dif-
ferences (such as temporal prediction ability) that operate
similarly across all items.
The goal of this study was to address the question of

whether neural phase-locking is sensitive to the discovery
of individual items during language learning, thereby ad-
vancing our understanding of the functional significance
of neural phase-locking in the context of language. In par-
ticular, I tested whether neural phase-locking during
learning reflects acquired knowledge of specific words
in an artificial language, as opposed to more generally in-
dexing interindividual differences in processing that
would operate similarly across all items. Following a
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classic statistical learning design, participants listened to a
continuous stream composed of repeating nonsense
words and then completed a recognition test. I hypothe-
sized that neural phase-locking to a given word during
learning should be higher when that word is successfully
perceived as a functional unit, such that phase-locking
and subsequent recognition performance should corre-
late at the individual item level. Alternatively, if neural
phase-locking during learning and subsequent word rec-
ognition correlate at the individual participant level (rep-
licating prior findings), but not at the individual item
level, this would provide evidence for the alternative hy-
pothesis: the idea that neural phase-locking during statis-
tical learning is primarily driven by interindividual
differences that operate similarly across all items.

METHODS

Participants

Twenty-one participants (10 women) contributed data to
this study. Participants were recruited at Northwestern
University and were paid $10/hr. They were all fluent
English speakers, between 19 and 23 years old (mean =
20.5 years), and had no history of neurological problems.
The study was undertaken with the understanding and
written consent of each participant.
Data from other tasks completed by this sample of par-

ticipants have been reported in a previous publication
(implicit training group; Batterink, Reber, & Paller,
2015). Briefly, the goal of this previous study was to test
whether the ability to predict incoming stimuli, a key
function of statistical learning, can be enhanced through
explicit training. This previous study did not analyze EEG
data recorded during the statistical learning exposure pe-
riod. This previous study also included an additional
group of participants assigned to an explicit training
condition, whose data are not included here.

Stimuli

Stimuli in the exposure phase were modeled after previ-
ous auditory statistical learning studies (e.g., Saffran,
Newport, Aslin, Tunick, & Barrueco, 1997; Saffran,
Newport, & Aslin, 1996). This language consists of 11 syl-
lables combined to create six trisyllabic nonsense words
(babupu, bupada, dutaba, patubi, pidabu, and tutibu).
Some members of the syllable inventory occur in more
words than others, which produce varying transitional
probabilities between the syllables within the words, as
in natural language. Each nonsense word was repeated
300 times in pseudorandom order, with the restriction
that the same word never occurred consecutively.
Because the speech stream contained no pauses or other
acoustic indications of word onsets, the only cues to
word boundaries were transitional probabilities, which

were higher within words than across word boundaries
(cf. Saffran et al., 1996, 1997).

A speech synthesizer (Mac text-to-speech application,
female voice “Victoria”) was used to generate a continu-
ous speech stream composed of the six trisyllabic non-
sense words. To achieve more natural-sounding speech,
speech synthesis technology makes use of automated
techniques to produce acoustic variations in the speech
output. Thus, as in speech produced by a human talker,
individual tokens of a given word type in the speech
stream were acoustically variable (e.g., each instance of
“babupu” was not uttered in an identical manner).
Descriptive statistics summarizing token durations for
each of the six words are shown in Table 1. As can be
seen from the table, there was considerable acoustic var-
iability across the tokens within each word type. Across
the synthesized stream, the average syllable-to-syllable
latency was 235 msec (SD = 39.8 msec).

The speech stream was edited to include 31 pitch
changes. Each pitch change represented either a 20-Hz in-
crease or decrease from the baseline frequency (∼160Hz).
Pitch changes occurred randomly, rather than systemati-
cally on certain syllables, and thus could not provide a
cue for segmentation. Syllables that spannedpitch changes
were excluded from EEG analysis. The detection of infre-
quent pitch changes was used as a cover task during the
learning period, to ensure adequate attention to the auditory
stimuli.

EEG event codes were sent at the onset of each sylla-
ble. The timing of syllable onsets in the continuous
speech stream was determined by three trained raters
using both auditory information and visual inspection
of sound spectrographs, with the mean rating used.
Any discrepancy > 20 msec among one or more raters
was resolved by a fourth independent rater. The first 30
syllables of the streamwere not coded and thus not included
in the analysis to avoid auditory onset effects.

Table 1. Descriptive Statistics for the Durations of Individual
Tokens within Each of the Six Words in the Artificial Language

Word

Mean
Duration
(msec)

Standard
Deviation
(msec)

Min
Duration
(msec)

Max
Duration
(msec)

Word
Presentation
Rate for ITPC
Calculation

(Hz)

babupu 705 54 588 887 1.4

bupada 749 49 645 836 1.3

dutaba 658 48 576 746 1.5

patubi 694 36 587 818 1.4

pidabu 711 52 595 822 1.4

tutibu 708 24 644 756 1.4

Token durations represent the total time between the onset of the first
word to the onset of the subsequent word in the continuous speech
stream.
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For the recognition test phase, six nonword foils were
created (batabu, bipabu, butipa, dupitu, pubada, and tu-
buda). The nonwords consisted of syllables from the lan-
guage’s syllable inventory that never directly followed
each other in the speech stream, even across word
boundaries. The frequency of individual syllables across
words and nonword foils was matched.

Procedure

At the beginning of the experiment, participants were
fitted with an elastic EEG cap embedded with electrodes.
After EEG setup, participants were informed that they
would listen to a speech stream of nonsense words.
They were instructed that the speech stream contained
occasional pitch changes and that they should detect these
pitch changes using the keypad, with one button indicat-
ing a low pitch change and another indicating a high pitch
change. To increase interest in the task, participants
earned a small amount of additional money (12 cents)
for each successfully detected pitch change. Because of
technical issues, behavioral data for the pitch-detection
task from two participants could not be analyzed.
Overall, the remaining participants performed well on
the pitch-detection task, detecting 94.6% (SD = 4.2%)
of the 31 pitch changes. The total exposure stream of ap-
proximately 21 min was divided into three equal blocks,
and participants were given a brief break between each
block.

After finishing the listening phase of the experiment,
participants were informed that the nonsense language
that they had just listened to was composed of individual
words. They were then given a free recall task in which
they were asked to recall the six words by writing them
down on a piece of paper. Overall performance was very
poor on this task (mode of 0 words correct across partic-
ipants) and was not analyzed further.

Participants then completed a forced-choice recogni-
tion judgment task. Each trial included a word and a non-
word foil. Participants gave two responses for each trial,
(1) indicating which of the two sound strings sounded
more like a word from the language and (2) reporting
on their awareness of memory retrieval, with “remem-
ber” indicating confidence based on retrieving specific in-
formation from the learning episode, “familiar” indicating
a vague feeling of familiarity with no specific retrieval,
and “guess” indicating no confidence in the selection.
Each of the six words and six nonword foils were paired
exhaustively for a total of 36 trials. In half of the trials, the
word was presented first, whereas in the other half, the
nonword foil was played first; presentation order for each
individual trial (whether presented first/second) was
counterbalanced across participants. Participants then
completed a final speeded target detection task, de-
signed to assess implicit memory of the syllable patterns.
Behavioral and EEG data for the remember/familiar/guess
component of the recognition test and for the target

detection task have been analyzed previously (Batterink
et al., 2015) and are not included in the current article.

Behavioral Data Analysis (2AFC Recognition Task)

For each participant (1–21) and word type (1–6), I com-
puted a “recognition score,” which represents the total
number of correct trials out of six for each word. These
126 values were then analyzed as the dependent variable
in the main linear mixed-effects model (described be-
low), to examine the relationship between recognition
and neural phase-locking at the item level.
In addition, a one-sample t test was used to test whether

recognition performance was above chance, with 50%
correct representing chance-level performance. Finally, a
repeated-measures ANOVA with Word type (1–6) as a
within-participant factor was used to test whether recogni-
tion performance differed across the different component
words of the language.

EEG Recording and Analysis

Recording and Preprocessing

EEGduring theexposurephasewas recordedwitha sampling
rate of 512 Hz from 64 Ag/AgCl-tipped electrodes attached to
an electrode cap using the 10–20 system. Recordings were
made with the Active-Two system (Biosemi), which does
not require impedance measurements, an online reference,
or gain adjustments. Additional electrodes were placed on
the left and right mastoids, at the outer canthi of both eyes,
and below both eyes. Scalp signals were recorded relative to
the Common Mode Sense active electrode and then rerefer-
enced off-line to the algebraic average of the left and right
mastoids.
All EEG analyses were carried out using EEGLAB

(Delorme & Makeig, 2004). First, EEG data were band-
pass filtered from 0.1 to 30 Hz. Sections of data in which
no auditory cues were present (i.e., during breaks or
pauses in the auditory stimulation) were removed from
the continuous data set. Next, the data were submitted
to an automatic artifact correction procedure, based on
the Artifact Subspace Reconstruction algorithm devel-
oped by Mullen et al. (2015), which is designed for the
removal of occasional large-amplitude noise/artifacts.
Critical parameters for the implementation of this algo-
rithm were selected conservatively based on empirical
testing and previously established guidelines (Chang
et al., 2018; high-pass transition = 0.25–0.75 Hz, mini-
mum channel correlation = 0.8, line noise = “off,” burst
criterion = 5, window criterion = 0.25). This step resulted
in the removal of the noisiest sections of data (mean =
1.4%, SD = 1.6%) and interpolation of an average of
4.47 of 64 scalp electrodes (SD= 4.46). Next, for each par-
ticipant and for each word type (1–6), epochs time-locked
from−2.5 to 2.5 sec relative to word onset were extracted
from the continuous data set and baseline corrected using
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mean amplitude across the whole epoch, producing 126
separate data sets.

Neural Phase-locking Analysis

For each of the 126 item-level data sets, neural phase-
locking was quantified by measuring intertrial phase co-
herence (ITPC) across all epochs. ITPC is a measure of
event-related phase locking. ITPC values range from 0, in-
dicating purely non-phase-locked activity, to 1, indicating
strictly phase-locked activity. A significant ITPC indicates
that the EEG activity in single trials is phase-locked at a
given time and frequency, rather than phase-random
with respect to the time-locking experimental event.
ITPC was computed using a continuous Morlet wavelet
transformation from 0.3 to 6.0 Hz via the newtimef func-
tion of EEGLAB. Wavelet transformations were computed
in 0.1-Hz steps with one cycle at the lowest frequency
(0.3 Hz) and increasing by a scaling factor of 0.5, reaching
10 cycles at the highest frequency (6.0 Hz). A scaling fac-
tor of 0.5 indicates that the width of the wavelet used for
the highest frequency is half (0.5) the width of the wave-
let used at the lowest frequency (Dickter & Kieffaber,
2014), allowing better frequency resolution at higher fre-
quencies than wavelet approaches using constant cycle
lengths (Delorme & Makeig, 2004). Two hundred output
times were computed for each frequency; time points
spanned an interval from −643 to 643 msec, separated
by an average of 6.5 msec. For each word type, a specific
frequency of interest was selected, corresponding to the
mean token duration (range across word types = 1.3–1.5
Hz; see Table 1 for specific frequency values by word
type). Note that the decision to select the most appropri-
ate frequency for each word type, rather than using a
constant frequency across word types, had no major im-
pact on the results, as the ITPC values at the different fre-
quency bins of interest (1.3, 1.4, and 1.5 Hz) were highly
correlated (mean r = .983). After artifact correction, an
average of 268 trials contributed to each item-level data
set (range = 147–301, SD = 26.5).
For each item, ITPC values were averaged from word

onset to 576 msec, which corresponds to the minimum
token duration across all words (see Table 1), to capture
neural phase-locking across the full duration of each
word. All 64 scalp electrodes were used in this calculation
because of the widespread nature of the effect (see
Results). These 126 average item-level ITPC values
(henceforth referred to as “item-level ITPC”) were used
as predictors in the main mixed-effects model.

Statistical Testing of Item-level ITPC

To test whether neural oscillations at the word presenta-
tion rate specifically track word identities, observed item-
level ITPC valueswere compared against a null distribution
of ITPC values. The null ITPC distribution—representing
the null hypothesis that item-level ITPC is not higher to

words than to pseudorandomly selected syllable triplets—
was estimated by creating “surrogate” data sets for each
participant and each word type. To control for word dura-
tion (both mean and standard deviation of durations of
words in the actual data sets), surrogate data sets were cre-
ated through an item-level matching procedure. For each
“true” word in an actual item-level data set, a randomly
selected triplet was selected for assignment to the surro-
gate data set, based on the following criteria: (1) The trip-
let was not simply another repetition of the true word,
and (2) The triplet had not already been selected previ-
ously for assignment to the surrogate data set. The triplet
with the closest duration to the true word was then se-
lected from the pool of all candidate triplets that met
these two criteria. In cases where more than one candi-
date triplet was an equally close match, the surrogate
word was selected randomly from the closest candidates.
Thus, this procedure ensured that, within a given item-
level data set, onsets for each surrogate word occurred
pseudorandomly across actual syllable positions and word
identities. For each item-level surrogate data set, ITPC at
the corresponding word presentation rate was then com-
puted as in the original analysis. This entire procedure
was performed 100 times, producing a surrogate ITPC dis-
tribution of 100 group-averaged values for each word
type. The critical ITPC value was defined as the value in
this surrogate distribution corresponding to the 95th per-
centile ( p < .05). If the observed item-level ITPC values
within a given condition (i.e., word type and electrode)
exceeded this critical value, ITPCwas considered significant,
providing evidence of word identity-specific phase-locking
that exceeds phase-locking to randomly selected syllable
triplets in the stream.

Statistical Testing of Item-level ITPC by Word Type

A linear mixed-effects model was used to test whether
item-level ITPC differs as a function of word type. The
model included word type (1–6) as a fixed effect, partic-
ipant intercept as a random effect, and item-level ITPC as
the dependent variable, using maximum likelihood esti-
mation. In addition, to explore potential acoustic factors
driving any potential differences in ITPC between word
types, a separate linear mixed-effects model tested
whether mean word duration and variability in word du-
ration across utterances predicted ITPC. This model in-
cluded the mean token duration and standard deviation
of token durations for each word as fixed effects (see
Table 1 for values), participant intercept as a random ef-
fect, and item-level ITPC as the dependent variable, using
maximum likelihood estimation.

Statistical Testing of Relationship between Item-level
ITPC and Recognition

My main hypothesis was that neural phase-locking to each
word in the speech stream should predict knowledge of
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that word, as assessed during the forced-choice recogni-
tion task. The underlying logic here is that, to the extent
that a word is successfully “learned,” acoustically variable
tokens should be segmented from the continuous
speech stream and perceived as a cohesive, functional
unit. These units should in turn be tracked by neural os-
cillations at the word presentation rate, with better
learned words eliciting stronger neural phase-locking
across word tokens (Figure 1). Thus, ITPC should be
higher to words that are better recognized compared to
words that are more poorly recognized.

A linear mixed-effects model was used to test whether
recognition differs as a function of item-level ITPC. To ac-
count for the potential effect of acoustic factors on word
learning, an initial model was run with maximum likeli-
hood estimation including token variability (standard de-
viation of duration across tokens; Table 1), mean token
duration (Table 1), and item-level ITPC as fixed effects
and recognition score as the dependent variable. The
Wald Z statistic was used to estimate variance at the par-
ticipant level and to test whether a random intercept for
participant should be included in the model, with p> .05
indicating that a random effect is needed (Seltman,
2012). Because the Wald Z test was not significant
(Wald Z = 0.97, p = .33), participant was not included
as a random intercept in the model.

As discussed in the Introduction, one theoretical pos-
sibility is that an individual’s average neural phase-locking

to all words in the language—indexing a general sensitiv-
ity to temporal patterns—could entirely account for the
previously demonstrated relationship between phase-
locking (or neural entrainment) and statistical learning
outcomes (Batterink & Paller, 2017, 2019; Buiatti et al.,
2009). I therefore tested whether item-level ITPC ac-
counts for item-level word recognition over and above
an individual’s average ITPC values. Each participant’s av-
erage word-rate ITPC (henceforth referred to as “average
ITPC”) was computed by averaging the six item-level
ITPC values included in the original analysis. To directly
compare the predictive value of item-level ITPC to aver-
age ITPC in item-level recognition performance, I ran a
linear mixed-effects model with recognition score as
the dependent variable and both item-level ITPC and av-
erage ITPC as fixed effects. In addition, I tested a linear
mixed-effects model with average ITPC as a fixed effect
and compared this model against the winning item-level
ITPC model (as described above) using Bayesian
Information Criterion (BIC). Finally, Spearman’s correla-
tion was used to test the relationship between average
ITPC and overall recognition performance across individ-
uals, as a conceptual replication of previous findings
(Batterink & Paller, 2017, 2019; Buiatti et al., 2009).

Time Course Analysis of ITPC

To examine the time course of ITPC over the course of
exposure to the artificial language, a fine-grained time
course analysis was carried out. Given previous evidence
that statistical learning in the context of artificial speech
segmentation paradigms occurs within 2 min in infants
(Saffran et al., 1996) and that learning occurs most rapidly
during early stages of exposure and follows a logarithmic
curve (Choi, Batterink, Black, Paller, & Werker, 2020;
Siegelman, Bogaerts, Elazar, Arciuli, & Frost, 2018), I ex-
pected the most reliable changes in ITPC to occur rela-
tively early on during exposure. Thus, the time course
analysis was restricted to the first block of exposure (cor-
responding to roughly 7 min or ∼800 total word presen-
tations). One participant was excluded from this analysis,
as part of the first exposure block for this participant was
not recorded because of experimenter error.
For each word type, single-trial wavelet decomposi-

tions were computed and stored as complex coefficients
using EEGLAB’s tfdata output variable, using the same
parameters as in the original analysis. To improve the
signal-to-noise ratio of single-trial estimates, every 10
consecutive trials were then grouped together using a
moving window approach (Trials 1–10, 2–11, 3–12,
etc.). Following our previous approach (Choi et al.,
2020), ITPC was then computed for each group of 10
consecutive trials. The key prediction here is that the
phase of neural oscillations at the word rate should be-
come more consistent if word learning occurs over the
course of exposure, such that ITPC at the word rate
should increase over time (see Batterink & Paller, 2017,

Figure 1. Summary of paradigm and analysis approach. (A) During the
exposure period, a continuous speech stream made up of six repeating
nonsense words was presented while listeners’ EEG was recorded. If
statistical learning of a given component word occurs, acoustically
variable tokens should be perceived as functionally equivalent units and
thus elicit more similar brain responses across word presentations. This
similarity across word presentations is quantified by ITPC. (B)
Knowledge of each of the six component words was assessed in a
subsequent 2AFC recognition test. Across 36 trials, each word is pitted
against six nonword foils, such that the maximum possible recognition
score is 6.
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2019). A linear mixed-effects model was used to test
whether item-level ITPC significantly increased over the
course of the first block. The model included the word
presentation number of the first trial in a given group
of 10 trials (i.e., number of presented items within each
word type; 1–80), word type (1–6), and the interaction
between word type and number of word presentations
as fixed factors; participant intercept as a random effect;
and ITPC values for each group of 10 consecutive trials as
the dependent variable, using maximum likelihood
estimation.

Temporal Dynamics of ITPC

Finally, to explore the temporal dynamics of neural
phase-locking across the unfolding of a word over time,
a separate analysis was run in which item-level ITPC was
computed only within the corresponding word presenta-
tion rate bins of interest (i.e., 1.3–1.5 Hz; see Table 1), as
well as at the average syllable presentation rate (4.3 Hz).
Discarding lower frequencies from the analysis allowed
for computing ITPC across a longer time window (i.e.,
−1570 to 1570 msec, compared to −643 to 643 msec
in the original analysis). All other parameters were
matched to the original analysis parameters. The time
course of ITPC at both the word and syllable frequencies
was plotted across time to visualize the temporal trajec-
tory of entrainment. A running paired t test across all
post-word-onset time intervals was used to test at which
time points ITPC values exceeded the prestimulus value
(i.e., the value occurring immediately before word
onset).
All p values are from two-tailed tests with an alpha of

.05. Greenhouse–Geisser corrections are reported for
factors with more than two levels.

RESULTS

Behavioral Results (2AFC Recognition Test)

Recognition performance was significantly above chance
across participants (mean = 59.3%, 11.7%), t(20) = 3.62,
p = .002, providing evidence of successful word segmen-
tation because of statistical learning. Recognition perfor-
mance varied significantly across the six component
words of the language words (word type: F(5, 100) =
2.76, p = .049; Figure 2B), indicating that some words
were learned better and recognized at higher levels than
others.

EEG Results (Exposure Period)

Item-level ITPC Shows Peaks at Word and
Syllable Frequencies

The average of all item-level ITPC values is plotted as a
function of frequency in Figure 2A. As shown in the fig-
ure, there is a clear ITPC peak in the frequency range

corresponding to the average word rate of the speech
stream, providing evidence of word-level neural phase-
locking. A second peak between 4 and 5 Hz can also
be seen, corresponding to the average syllabic rate of
the speech stream.

Item-level ITPC Shows Significant Tracking of
Word Identities

Across all electrodes, item-level ITPC within each word
type was highly significant when tested against the null
distribution of ITPC values, which reflects phase-locking
to randomly selected syllable triplets that were equated

Figure 2. Quantification of neural phase-locking to component words
in the speech stream at the word presentation rate. (A) ITPC as a
function of frequency, averaged across the six component words of the
speech stream. Two peaks are observed, corresponding to the word
rate (range = 1.3–1.5 Hz across words) and the syllable rate (mean =
∼4.3 Hz). Shaded regions represent SEM. (B) ITPC and recognition
score as a function of word type, across all participants. Across
participants, words that showed higher ITPC values were also better
recognized. (C) Distribution of word-rate ITPC across the scalp for each
of the six words in the language. Electrode locations with significant
word-rate ITPC as contrasted against the shuffled surrogate distribution
are denoted with a black circular marker.
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for duration (all ps < .01, with observed ITPC values ex-
ceeding the 99th percentile of the surrogate distribu-
tion). This result indicates that neural oscillations at the
word rate phase-lock to words in the speech stream over
and above phase-locking to random syllable triplets, pro-
viding evidence that individual-item ITPC tracks word
identities.

Item-level ITPC Varies as a Function of Word Type

Item-level ITPC varied significantly as a function of word
type, with some words in the language eliciting signifi-
cantly higher ITPC than other words (effect of word type
on item-level ITPC: F(5, 30) = 10.6, p < .001). As shown
in Figure 2B, word types that elicited greater ITPC also
appeared to show higher recognition performance.
Effects of word type and item-level ITPC on recognition
performance were statistically tested through linear
mixed-effects modeling, with results described below
(under Item-level ITPC Predicts Item-level Word
Recognition section). In addition, item-level ITPC varied
significantly as a function of variability in token duration
(effect of standard deviation of token duration: F(1, 40) =
8.59, p=.006) aswell as average tokenduration, F(1, 48)=
5.36, p = .025. Higher ITPC values were associated with
higher duration variability and shorter mean durations
across tokens.

The distribution of ITPC across the scalp for each word
type is plotted in Figure 2C. As shown in the figure, ITPC
values at a large majority of individual electrodes reached
statistical significance when tested independently against
the null distribution ( p < .05). Overall, the distribution
of ITPC across the scalp was relatively widespread, with a
frontocentral maximum, consistent with an auditory
response.

Item-level ITPC Predicts Item-level Word Recognition

Critically, supporting my main prediction, the full three-
predictor model indicated that item-level ITPC signifi-
cantly predicted subsequent item-level word recognition,
F(1, 83) = 8.60, p = .004. Figure 3A shows item-level
ITPC as a function of recognition score (1–6). The num-
ber of items that comprise each recognition score “bin”
are as follows: score 1 = 13; score 2 = 22; score 3 = 21;
score 4 = 28; score 5 = 24; and score 6 = 16.

Word variability in token duration also significantly pre-
dicted recognition performance (standard deviation of
token duration: F(1, 57) = 5.23, p = .026). Mean token
duration was not a significant predictor in the model, F(1,
42) = 2.27, p = .14. Together, these results indicate that
item-level ITPC and word variability both independently
and positively predicted word learning (ITPC parameter
estimate = 16.9, 95% CI [5.44, 28.4], SE= 5.76; word var-
iability parameter estimate = 0.027, 95% CI [0.0034,
0.051], SE = 0.012).

The Wald Z test was not significant (Wald Z= 0.97, p=
.33), indicating that unmeasured variance at the individual
participant level did not significantly contribute to the
model. When item-level ITPC was included as a single pre-
dictor in the model, the random effect of participant again
did not significantly predict word recognition (Wald Z =
0.52, p = .60).
For visualization purposes, ITPC for the items with the

highest recognition score (4–6; 68 items) and the lowest
recognition score (0–4; 58 items), divided by median
split, are plotted as a function of frequency and scalp dis-
tribution in Figure 3B and 3C.

Figure 3. Relationship between ITPC and recognition score pooling
across words and participants. (A) ITPC predicts recognition score at
the item level. (Here, an “item” is defined as the combined collection of
individual instances of the same word at the single participant level;
thus, each participant contributes six items in total to the analysis.)
Items are binned by recognition score (1–6); note that a recognition
score of 0 is not plotted because this bin contains only two items in
total. The dotted line represents the best linear fit between ITPC and
recognition score. Error bars represent SEM. (B) ITPC as a function of
frequency for high and low recognition items, divided by median split
for data visualization purposes. High recognition items (n = 68) have a
recognition score of 4–6, and low recognition items (n = 58) have a
recognition score of 0–3. Shaded regions represent SEM. (C)
Distribution of item-level ITPC across the scalp for high and low
recognition items.

8 Journal of Cognitive Neuroscience Volume X, Number Y



Item-level ITPC Predicts Item-level Word Recognition
Better than Average ITPC

When both item-level ITPC and average ITPC (at the partic-
ipant level) were included as predictors in the model, only
item-level ITPC significantly predicted item-level word rec-
ognition (item-level ITPC: F(1, 91) = 5.45, p= .022; overall
ITPC= F(1, 102)= 0.37, p= .55). This result indicates that
item-level ITPC accounts for item-level word recognition
over and above an individual’s average ITPC value. Amodel
including average ITPC as a single predictor did signifi-
cantly predict item-level word recognition, F(1, 115) =
8.78, p = .004; however, this model performed more
poorly than the comparison model in which item-level
ITPC was used as a predictor (BIC for model with overall
ITPC = 504.3; BIC for model with item-level ITPC = 500.7).
Across individuals, average ITPC predicted overall rec-

ognition performance (Spearman’s r = .44, p = .048),
which conceptually replicates previous reports of correla-
tions between neural entrainment and statistical learning
at the individual level (Batterink & Paller, 2017, 2019;
Buiatti et al., 2009). In summary, overall neural phase-
locking at the individual level predicts statistical learning
performance as measured by word recognition but is not
as good a predictor as item-level neural entrainment.

Item-level ITPC Increases over the First Block
of Exposure

As shown in Figure 4, across all word types, item-level ITPC
showed a significant increase over the first block of expo-
sure (effect of number of word repetitions: F(1, 8854) =

7.32, p= .007). The item-level ITPC slope over time varied
significantly as a function of word type (Word Type ×
Number of Word Repetitions: F(5, 8852) = 8.08, p < .001).
Follow-up analyses indicated that the two words associated
with the highest recognition performance (i.e., bupada and
dutaba) both independently showed significant increases
in ITPC over exposure (both ps < .010), whereas the two
words with the lowest recognition performance (babupu
and tutibu) showed negative or marginally negative ITPC
decreases over the first block of exposure ( p= .023–.053).

Temporal Dynamics of Item-level ITPC Show Early
Onset and Relatively Late Peak

As shown in Figure 5A, item-level ITPC at the word presen-
tation rate peaked at approximately 420 msec after word

Figure 4. Modeled progression of word-rate ITPC by word as a function
of exposure. Values are based on parameter estimates of fixed effects in
the linear mixed-effects model within the first block (∼7 min) of
exposure. ITPC showed a significant increase as a function of exposure
across all words, reflecting online learning. The change in ITPC over
exposure varied significantly by word.

Figure 5. Temporal dynamics of item-level ITPC over the course of
word presentation, relative to word onset. (A) Temporal evolution of
item-level ITPC at the word rate. ITPC peaks approximately 418 msec
after word onset. Shaded green regions around the line represent SEM.
The shaded yellow region (spanning 86–701 msec) shows time intervals
when ITPC significantly exceeds prestimulus baseline ITPC. (B)
Temporal evolution of item-level ITPC at the syllable rate,
demonstrating a much earlier peak (∼110 msec).
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onset and significantly exceeded the prestimulus value
from 86 to 701 msec ( p< .05). ITPC during the prestimu-
lus interval also showed a steady increase over time, which
may be attributed to reduced temporal jitter relative to
word onset over the prestimulus interval. In contrast,
ITPC at the syllable presentation rate showed a much ear-
lier peak, at approximately 110 msec (Figure 5B); however,
these peak values were not significantly different from the
prestimulus value. Again, ITPCduring theprestimulus inter-
val increased strongly over time, reflecting reduced tem-
poral variability relative to syllable onset.

DISCUSSION

The current findings demonstrate a robust association
between neural phase-locking and subsequent linguistic
knowledge at the individual word level, providing novel
evidence that phase-locking to “hidden” linguistic units
in continuous speech delineates perceived linguistic
boundaries on a word-by-word basis. Using a classical sta-
tistical learning task, participants were passively exposed
to a continuous speech stream made up of repeating
nonsense words. After the exposure period, learners’
memory of the nonsense words was assessed using an
explicit 2AFC recognition test. Words that elicited stron-
ger neural phase-locking during exposure, as quantified
by ITPC, were recognized at higher rates on the subse-
quent memory test. Neural phase-locking at the word
rate also significantly increased over the first block of
the exposure period. These results indicate that neural
phase-locking over repeated word presentations reflects
the discovery, encoding, and perception of individual lin-
guistic items acquired as a result of statistical learning.

These findings support the hypothesis that continuous
speech is segmented into meaningful functional units
through nested, hierarchically organized neural oscilla-
tions (Gross et al., 2013; Giraud & Poeppel, 2012;
Peelle & Davis, 2012). According to these models, speech
is parsed into meaningful units by neural oscillations op-
erating across a range of specific frequencies that match
the rhythms of relevant linguistic components (e.g., pho-
nemes, syllables, words, and phrases). Consistent with
this idea, I found that neural phase-locking is higher to
words that are successfully recognized, compared to
those that are not. Presumably, words with higher recog-
nition performance were perceived as functional units
and tracked by oscillatory activity at the matching word
rate. In contrast, words with poor recognition perfor-
mance were processed merely as a sequence of unrelated
syllables rather than as a word unit and thus were not
tracked by corresponding word-rate oscillations.

Neural Entrainment and Word Knowledge May
Interact Bidirectionally

The current results are correlational in nature and cannot
directly disentangle the causality between neural phase-

locking and word learning. However, on the basis of pre-
vious findings, I propose that there may be bidirectional
interactions between phase-locking and linguistic knowl-
edge: (1) Neural phase-locking to underlying patterns
may influence the formation of high-level linguistic repre-
sentations, and (2) word representations may exert a
top–down influence on phase-locking of ongoing oscilla-
tions. The first idea—that modulation of neural phase
may influence word learning—is supported by several re-
cent transcranial alternating current stimulation studies
(Riecke, Formisano, Sorger, Başkent, & Gaudrain, 2018;
Wilsch, Neuling, Obleser, & Herrmann, 2018; Zoefel,
Archer-Boyd, & Davis, 2018). By directly manipulating
neural oscillations, these studies demonstrated that the
phase lag between brain and speech rhythms influenced
the neural responses to intelligible speech in superior
temporal gyrus (Zoefel et al., 2018) as well as speech
comprehension (Riecke et al., 2018; Wilsch et al.,
2018). These results indicate that the phase alignment
between neural oscillations and an ongoing speech signal
plays a causal role in high-level speech processing and, by
extension, could also (in principle) influence speech seg-
mentation and statistical word learning.
A major mechanism underlying neural phase-locking

to speech is phase-resetting of low-frequency oscillations
in the auditory cortex to “acoustic landmarks” in the
speech envelope, such as speech onsets or sharp acous-
tic transients (Doelling, Arnal, Ghitza, & Poeppel, 2014;
Gross et al., 2013). Certain words may thus be more
learnable because they contain acoustic features that elic-
it stronger or more consistent phase-resetting across
word presentations. Consistent with this idea, in this
study, I found that some words elicited higher ITPC than
others and that word-level differences in ITPC accounted
for word-level differences in recognition (Figure 2B).
Furthermore, these word-level ITPC differences emerged
very early on and were relatively stable across exposure;
words that showed high ITPC values during early learning
continued to elicit relatively higher ITPC values through-
out the first block of exposure (Figure 4). These findings
suggest that “baseline” acoustic features influence phase-
locking and that degree of phase-locking predicts whether
a given word is more learnable. Over multiple word expo-
sures, phase-locked oscillations at the word frequency
couldmediate the binding of syllables into larger temporal
chunks, thereby supporting word learning. This idea is
consistent with the proposal that neural entrainment func-
tions to align phases of neural excitability to repeated tem-
poral patterns, providing a mechanism for identifying
specific patterns in upcoming sensory input (Schroeder
& Lakatos, 2009).
A second possibility, which is not mutually exclusive, is

that high-level word knowledge has a top–down influence
on neural phase-locking. This idea is supported by the
present finding that ITPC significantly increased over ex-
posure, reflecting the gradual acquisition of word knowl-
edge that in turn may facilitate predictive processing. This
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significant increase in phase-locking over time cannot be
accounted for by bottom–up factors alone, given that the
stimulus stream did not differ systematically over expo-
sure, and replicates previous findings showing that neural
phase-locking to words (or phrases) in an artificial lan-
guage increases gradually over the course of exposure
(Choi et al., 2020; Batterink & Paller, 2017, 2019; Getz
et al., 2018). Together, these results converge with
mounting evidence that neural phase-locking is critically
modulated by top–down processes such as selective atten-
tion and expectations (e.g., Rimmele, Zion Golumbic,
Schröger, & Poeppel, 2015; Horton, D’Zmura, &
Srinivasan, 2013; Zion Golumbic et al., 2013; Ding
& Simon, 2012; Lakatos, Karmos, Mehta, Ulbert, &
Schroeder, 2008). Mechanistically, a recent MEG study
demonstrated that top–down signals from frontal brain
areas causally influence the phase of speech-coupled oscil-
lations in auditory cortex, enhancing speech–brain cou-
pling (Park, Ince, Schyns, Thut, & Gross, 2015). The idea
that neural phase-locking is influenced by top–down pro-
cessing is also compatible with theoretical proposals that
neural phase-resetting provides an instrument for sensory
selection by enabling phases of higher neural excitability
to align with important stimulus events (Thut, Miniussi, &
Gross, 2012; Schroeder & Lakatos, 2009). In the context of
speech segmentation, high-level word knowledge enables
predictions to be made about upcoming syllables. In turn,
these top–down predictions may function to optimally align
ongoing neural oscillations with the most important or in-
formative moments of the speech signal, acting to in-
crease sensitivity to relevant acoustic cues and thereby
facilitating speech processing (Peelle & Davis, 2012).
The current results also suggest that bottom–up acous-

tic factors may interact with statistical learning and top–
down knowledge, with words that are the most initially
“trackable” also benefiting the most from exposure and
showing continual gains in learning (Figure 5). The time
course analysis demonstrated that words with the highest
ITPC estimates at the beginning of the exposure period
(i.e., bupada and dutaba) showed significant increases
in ITPC over exposure. In contrast, words with low
initial-phase locking (i.e., babupu and tutibu) did not
show increases in neural phase-locking over this period,
suggesting that words that are not initially trackable (as
measured by baseline ITPC estimates) do not benefit
from exposure. In summary, both bottom–up and top–
down factors appear to contribute to the observed rela-
tionship between item-level ITPC and subsequent word
learning, and furthermore, these different mechanisms
are likely to interact with one another.

Word Variability across Utterances Influences Both
ITPC and Word Learning

At the behavioral level, I found a significant impact of
word type on recognition performance, indicating that
some words were more easily learned than others. This

finding aligns well with previous findings that language-
specific knowledge influences linguistic statistical learn-
ing, with words that more closely follow the phonotactic
regularities of a participant’s native language being
learned better (Siegelman, Bogaerts, Kronenfeld, &
Frost, 2018; Finn & Hudson Kam, 2015). A more novel,
unexpected finding was that words with more variable
durations in the stream were learned better compared
to words that had less variability. Some caution is war-
ranted in interpreting this result, given that there were
only six words in the language and that a full exploration
of acoustic differences between words is beyond the
scope of this article. Nonetheless, this finding is consis-
tent with prior evidence showing that variability facilitates
speech learning and generalization to novel instances
(e.g., Bradlow & Bent, 2008; Singh, 2008; Clopper &
Pisoni, 2004; Greenspan, Nusbaum, & Pisoni, 1988). For
example, the perception of new sentences produced
with synthetic speech improves when participants are ex-
posed to a larger set of training stimuli compared to a
restricted set (Greenspan et al., 1988). Within the context
of statistical learning, Gómez (2002) demonstrated that
infants’ and adults’ learning of nonadjacent dependencies
(e.g., pel-X-jic) depends on sufficient variability, occur-
ring only when the middle, nonpredictive element of
the dependency (i.e., X) is drawn from a sufficiently large
pool. Taken together, these results indicate that expo-
sure to a greater variety of exemplars allows learners to
better ignore irrelevant features and identify the most
predictable, informative, or invariant structures in a stim-
ulus stream. In the current study, words with greater var-
iability across utterances may promote the acquisition of
more abstract word representations, as opposed to more
specific, stimulus-based, acoustic representations
( Vouloumanos, Brosseau-Liard, Balaban, & Hager,
2012). This in turn may facilitate generalization and bet-
ter recognition performance when the same word pre-
sented in a new context (i.e., in isolation during the
2AFC recognition task, rather than embedded in a contin-
uous speech stream as during the exposure phase).

Word variability in duration across utterances also in-
fluenced ITPC, with greater word variability predicting
higher ITPC values. This finding does not follow from a
straightforward bottom–up mechanistic account of neu-
ral phase-locking, which would predict that ITPC should
be higher to items that have a more stable (i.e., less var-
iable) duration across presentations. Rather, this finding
suggests that greater word variability facilitates word
learning, which in turn leads to stronger phase-locking
to the embedded words, providing additional support
for top–down influences on neural phase-locking.

Neural Mechanisms Underlying Statistical Learning

On a more specific note, the current findings also
provide new insights into the neural mechanisms that
underlie statistical learning in the context of word
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segmentation, extending previous work in this area. As
described in the Introduction, prior studies have shown
that neural tracking of repeating nonsense words pre-
dicts statistical learning performance on subsequent be-
havioral tests at the individual level; participants who show
stronger neural entrainment responses to the underlying
linguistic structures perform better on subsequent learn-
ing tests (Batterink & Paller, 2017, 2019; Buiatti et al.,
2009). The current results conceptually replicate these re-
sults, demonstrating that average ITPC during learning
predicts subsequent overall recognition performance
across individuals. At the same time, the current findings
go beyond a demonstration of interindividual correlations,
showing that item-level neural entrainment predicted
item-level recognition more strongly than individual-level
average entrainment. Furthermore, the effect of individ-
ual participant did not significantly account for variability
in item-level word recognition when item-level ITPC was
accounted for.

Taken together, these results indicate that neural
phase-locking in the context of language learning primar-
ily reflects the discovery and perception of individual
items in the language inventory, rather than indexing
more general interindividual differences that would oper-
ate similarly across all items, such as the tendency to
“spontaneously synchronize” one’s behavior to external
stimuli (Assaneo et al., 2019). In other words, it appears
that the previously documented relationship between
neural entrainment and statistical learning performance
(Batterink & Paller, 2017, 2019; Buiatti et al., 2009) pri-
marily reflects the specific content of linguistic knowledge
and can be accounted for by better learners’ higher rates
of word learning.

ITPC results also hint that learners may have engaged
in a suboptimal parsing strategy for words that were not
successfully learned (i.e., “lowest recognition items” with
a score of 50% accuracy or below on the 2AFC test—a
recognition score). As shown in Figure 3B, low recogni-
tion items show a peak at approximately 2.1 Hz, which
corresponds to the average bigram rate in the speech
stream. This finding suggests that poorly learned items
may be parsed as bigrams on some proportion of trials.
For example, for a triplet such as “babupu,” participants
may segment the bigram “babu” on some occurrences,
“bupu” on other occurrences, and neither possible bi-
gram on still other occurrences. Across all trials, this
would produce a weak signature of bigram tracking.
Because overall ITPC values corresponding to the bigram
presentation rate are similar across highest recognition
and lowest recognition items (Figure 3B), it appears that
some (relatively weak) degree of erroneous bigram pars-
ing also occurs for better learned words. This finding
highlights that ITPC at the word rate specifically is a signa-
ture of statistical word learning and that phase-locking
at other low frequencies more generally (< 10 Hz) does
not distinguish between better learned and poorly learned
items.

Temporal Trajectory of Item-level
Neural Entrainment

The temporal dynamics of ITPC provide additional in-
sights into the neural mechanisms that support statistical
learning of novel words. As a given word unfolds, ITPC
showed a steep increase beginning immediately after
word onset (see Figure 5). The rapid nature of this effect
converges with previous demonstrations that word on-
sets modulate ongoing neural responses very quickly.
For example, a recent MEG study modeled neural re-
sponses to continuous narrative speech and found a
highly significant effect of word onsets with a peak latency
of 103 msec (Brodbeck, Hong, & Simon, 2018). This
finding was interpreted as evidence that word boundaries
are detected essentially as they occur, rather than after in-
corporating cues occurring subsequent to word onset.
Similarly, an ERP study found an early sensory-related
N100 effect to onsets of nonsense words in continuous
speech (Sanders, Newport, & Neville, 2002). This effect
was observed only in learners who showed the strongest
behavioral evidence of word knowledge, suggesting that
high-level linguistic knowledge is a prerequisite for this
early response. In the context of neural entrainment
frameworks (e.g., Schroeder & Lakatos, 2009), word on-
sets may represent privileged sensory events, as syllables
occurring at the beginning of a word are relatively
information-rich and highly predictive of subsequent syl-
lables. Successful word learning may therefore be accom-
panied by the rapid alignment of neural oscillations to
these informative word onsets.
Although showing a rapid increase soon after word on-

set, the neural entrainment response did not peak until
∼420 msec, which coincides to roughly 200 msec after
the onset of the second syllable. This peak was followed
by a decrease in entrainment, which statistically reached
baseline levels by 701 msec, very close to the mean word
duration of 704 msec (see Table 1). A similar neural track-
ing trajectory was reported by Ding et al. (2016; see their
Figure 4), who found that neural activity reached its peak
during the second word of artificial grammar phrases and
then progressively decreased with each additional word
in the phrase. Taken together, these findings indicate that
ITPC tracks the entire time course of a higher-level unit,
rather than being a transient response occurring only at unit
boundaries (cf. Ding et al., 2016). It is also interesting to
note that the observed peak in ITPC is similar to the typical
latency of the N400 effect (Kutas & Federmeier, 2011). This
suggests that neural tracking of a given word may decline
once the word is processed to the point of recognition.
In contrast to ITPC at the word presentation rate, ITPC

at the syllable rate peaked very soon after word onset
(∼110 msec; Figure 5B). Overall, the trajectory of neural
entrainment at the syllable rate resembles a symmetrical,
steep parabolic curve centered just after word onset, con-
sistent with a sensory-evoked response that is not strongly
modulated by high-level knowledge.
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Conclusions

In summary, the main finding of the study is that neural
phase-locking accompanies an individual’s subjective
perception of an individual word in continuous speech,
as acquired in real time during statistical learning.
These results indicate that the association between neu-
ral phase-locking and statistical learning is not limited to
perfectly isochronous syllable sequences (e.g., Batterink
& Paller, 2017, 2019; Getz et al., 2018; Ding et al., 2016;
Buiatti et al., 2009) but is generalizable to continuous
speech containing nonidentical word tokens. The demon-
stration that neural phase-locking is sensitive to recogni-
tion strength of individual words opens up the possibility
of tracking the contents of learning in real time. For exam-
ple, by monitoring the EEG of language learners exposed
to a continuous stream of foreign language input, it may
be possible to predict which words have been successfully
learned and which words require additional training. This
neural phase-locking approach may also be applied to in-
vestigate other aspects of language that involve the con-
catenation of smaller linguistic elements into larger units,
such as the learning and processing of grammatical rules,
as well as perceptual aspects of language acquisition, such
as phonetic category learning. Thus, new applications of
this approach may significantly advance our understand-
ing of other neural mechanisms underlying language ac-
quisition and processing.
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