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Abstract

■ The ability to discover regularities in the environment, such
as syllable patterns in speech, is known as statistical learning. Pre-
vious studies have shown that statistical learning is accompanied
by neural entrainment, in which neural activity temporally aligns
with repeating patterns over time. However, it is unclear whether
these rhythmic neural dynamics play a functional role in statisti-
cal learning or whether they largely reflect the downstream con-
sequences of learning, such as the enhanced perception of
learned words in speech. To better understand this issue, we
manipulated participants’ neural entrainment during statistical
learning using continuous rhythmic visual stimulation. Partici-
pants were exposed to a speech stream of repeating nonsense
words while viewing either (1) a visual stimulus with a “congru-
ent” rhythm that aligned with the word structure, (2) a visual
stimulus with an incongruent rhythm, or (3) a static visual stim-
ulus. Statistical learning was subsequently measured using both
an explicit and implicit test. Participants in the congruent condi-
tion showed a significant increase in neural entrainment over

auditory regions at the relevant word frequency, over and above
effects of passive volume conduction, indicating that visual stim-
ulation successfully altered neural entrainment within relevant
neural substrates. Critically, during the subsequent implicit test,
participants in the congruent condition showed an enhanced
ability to predict upcoming syllables and stronger neural phase
synchronization to component words, suggesting that they had
gained greater sensitivity to the statistical structure of the speech
stream relative to the incongruent and static groups. This learn-
ing benefit could not be attributed to strategic processes, as par-
ticipants were largely unaware of the contingencies between the
visual stimulation and embedded words. These results indicate
that manipulating neural entrainment during exposure to regu-
larities influences statistical learning outcomes, suggesting that
neural entrainment may functionally contribute to statistical
learning. Our findings encourage future studies using non-
invasive brain stimulation methods to further understand the
role of entrainment in statistical learning. ■

INTRODUCTION

Much of the input that hits our senses follows a predictable
structure, with the same items or events co-occurring
across repeated experiences. Humans are capable of
extracting these patterns through mere exposure to envi-
ronmental stimuli, without intention or effort—an ability
known as statistical learning (Aslin, 2017). The first dem-
onstration of statistical learning involved presenting
infants with a continuous speech stream made up of
repeating trisyllabic nonsense words (e.g., bidakupa-
doti…; Saffran, Aslin, & Newport, 1996). After only 2 min
of exposure, infants were able to distinguish between
words from the stream and recombined foil items, sug-
gesting that they had extracted the temporal statistics
of syllables in the stream. Subsequent research has
extended these results, demonstrating that statistical
learning is present across the life span (Choi, Batterink,
Black, Paller, & Werker, 2020; Palmer, Hutson, & Mattys,
2018; Saffran & Kirkham, 2018; Saffran, Johnson, Aslin,
& Newport, 1999; Saffran, Newport, Aslin, Tunick, &
Barrueco, 1997; Saffran et al., 1996) and operates across

different modalities and types of stimuli (Conway &
Christiansen, 2005; Fiser & Aslin, 2001; Saffran et al.,
1999). Statistical learning also occurs in nonhuman ani-
mals, including cotton-top tamarins (Hauser, Newport,
& Aslin, 2001) and dogs (Boros et al., 2021), and supports
learning of a variety of different statistical structures
(Saffran et al., 2008; Newport & Aslin, 2004; Gómez,
2002). Still, although statistical learning may be consid-
ered a ubiquitous learning mechanism, it remains partic-
ularly well-studied within the domain in which it was first
investigated—speech segmentation (Siegelman, 2020;
Aslin, 2017; Thiessen, Girard, & Erickson, 2016; Arciuli &
Torkildsen, 2012; Romberg & Saffran, 2010; Estes, Evans,
Alibali, & Saffran, 2007).

Although decades of behavioral work have character-
ized the contexts under which statistical learning operates
(Isbilen & Christiansen, 2022), less is known about how
the brain carries out the underlying computations. Neuro-
imaging studies have implicated a range of neural regions
in statistical learning, such as modality-specific cortical
areas (e.g., visual, auditory, and somatosensory), the left
inferior frontal gyrus, and domain-general memory sys-
tems, including the striatum and the medial temporal lobe
(for a review, see Batterink, Paller, & Reber, 2019).Western University, London, Ontario, Canada
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Alongside these neuroimaging data, EEG and MEG studies
have temporally characterized the neural response elicited
by repeating patterns in input. For example, ERP studies
have shown that statistical learning is reflected by an
N400-like potential to nonsense words in continuous
speech (Cunillera et al., 2009; De Diego Balaguer, Toro,
Rodriguez-Fornells, & Bachoud-Lévi, 2007; Cunillera,
Toro, Sebastián-Gallés, & Rodríguez-Fornells, 2006),
which may represent the construction of a prelexical trace
for new words (De Diego Balaguer et al., 2007).

More recently, a number of EEG studies have incorpo-
rated a frequency-tagging approach to show that statistical
learning is also accompanied by neural entrainment,
which can be defined broadly as the temporal alignment
of neural activity with regularities in a stimulus stream
(Obleser & Kayser, 2019). The typical approach in these
studies (Benjamin et al., 2023; Batterink & Zhang, 2022;
Fló, Benjamin, Palu, & Dehaene-Lambertz, 2022; Moreau,
Joanisse, Mulgrew, & Batterink, 2022; Pinto, Prior, & Zion
Golumbic, 2022; Smalle, Daikoku, Szmalec, Duyck, &
Möttönen, 2022; Benjamin, Dehaene-Lambertz, & Fló,
2021; Elmer, Valizadeh, Cunillera, & Rodriguez-Fornells,
2021; Henin et al., 2021; Zhang, Riecke, & Bonte, 2021;
Batterink, 2020; Choi et al., 2020; Ordin, Polyanskaya,
Soto, & Molinaro, 2020; Batterink & Paller, 2017, 2019;
Getz, Ding, Newport, & Poeppel, 2018; Kabdebon, Pena,
Buiatti, & Dehaene-Lambertz, 2015; Buiatti, Peña, &
Dehaene-Lambertz, 2009; see also Batterink & Choi,
2021; Benjamin et al., 2021) involves presenting individual
syllables, organized into trisyllabic nonsense words, at a
precise, fixed rate within a continuous sequence (e.g.,
“tu-pi-ro-go-la-bu…”). This produces well-defined peaks
in the neural power and phase coherence spectrum at
both the syllable and word frequencies, which may be
taken as separate indices of syllable-related and word-
related processing (e.g., Kabdebon et al., 2015; Buiatti
et al., 2009). Many studies have reported that neural
entrainment to words increases over the course of expo-
sure, reflecting the gradual acquisition of the statistically
defined units (Fló et al., 2022; Moreau et al., 2022; Elmer
et al., 2021; Zhang et al., 2021; Batterink, 2020; Choi et al.,
2020; Ordin et al., 2020; Batterink & Paller, 2017, 2019).
Several results also suggest that stronger neural entrain-
ment to words over the course of exposure is associated
with superior learning outcomes, as assessed by correlat-
ing individuals’ neural entrainment during learning with
their performance on postlearning tasks (Batterink,
2020; Choi et al., 2020; Batterink & Paller, 2017, 2019;
Kabdebon et al., 2015; Buiatti et al., 2009). On the basis
of these results, neural entrainment to words has been
interpreted to reflect various cognitive processes, such
as the subjective perception of speech units (Buiatti
et al., 2009), the perceptual binding of stimulus units into
integrated composites (Batterink & Paller, 2017), and/or
the segmentation process itself (Ordin et al., 2020).

As an aside, it is important to note that although these
studies establish evidence of neural entrainment during

statistical learning in the broad sense—that is, the align-
ment of neural signals with a rhythmic stimulus—they can-
not provide evidence of neural entrainment as defined in
the narrow sense, as the phenomenon in which endoge-
nous neural oscillators adjust their frequency or phase to
align with incoming stimuli (Bánki, Brzozowska, Hoehl, &
Köster, 2022; Obleser & Kayser, 2019). In general, there is
debate in the neural entrainment literature about the
degree to which enhanced neural activity at stimulation
frequencies is because of synchronization of neural oscil-
lators versus the concatenation of evoked responses
(Doelling, Assaneo, Bevilacqua, Pesaran, & Poeppel,
2019; Zoefel, ten Oever, & Sack, 2018; Keitel, Quigley, &
Ruhnau, 2014; Capilla, Pazo-Alvarez, Darriba, Campo, &
Gross, 2011). In the current article, unless otherwise spec-
ified, we define neural entrainment more broadly as a set
of dynamic neural processes that track rhythmic sensory
input and at least partially reflect internally generated pre-
dictions or top–down perception of the stimuli (e.g.,
Vanden Bosch der Nederlanden, Joanisse, Grahn, Snijders, &
Schoffelen, 2022; Lu, Sheng, Liu, & Gao, 2021; Ding,
Melloni, Zhang, Tian, & Poeppel, 2016; Nozaradan, Peretz,
Missal, & Mouraux, 2011). In the context of statistical
learning of speech sounds, neural entrainment could
thereby serve to enhance key segments of the speech
stream, such as word onsets. Although understanding
whether neural entrainment in the narrow sense oper-
ates during statistical learning is certainly an important
question for future research, this issue is highly complex
(Zoefel, ten Oever, et al., 2018) and beyond the scope of
the current study.
Outside the domain of statistical learning, neural

entrainment mechanisms have also been linked to speech
processing more broadly. Unlike the highly controlled,
artificial speech streams used by statistical learning stud-
ies, natural speech is not perfectly regular, but it is quasire-
gular. A number of influential models have proposed that
endogenous neural oscillations align with incoming rhyth-
mic linguistic units in speech and that this alignment is a
foundational mechanism for parsing and decoding con-
nected speech (Meyer, 2018; Gross et al., 2013; Giraud
& Poeppel, 2012; Peelle & Davis, 2012). More specifically,
thesemodels suggest that oscillations at different frequen-
cies correspond to units of speech that also unfold at dif-
ferent time scales (e.g., phonemes, syllables, words, and
phrases). Coupling between these signals at slower and
faster frequencies then supports the hierarchical combina-
tion of smaller elements into larger units (e.g., syllables
into words). These models have been supported by a
number of findings demonstrating that neural entrain-
ment and top–down comprehension of speech are corre-
lated (e.g., Jin, Lu, & Ding, 2020; Luo & Ding, 2020; Ding
et al., 2016, 2017; Gross et al., 2013; Peelle & Davis, 2012;
Ahissar et al., 2001). For example, Ding and colleagues
(Ding et al., 2016, 2017) presented participants with
simple four-word phrases made up of monosyllabic
words at an isochronous rate (e.g., “dry fur rubs skin”).
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Participants’ neural response showed spectral peaks at
frequencies corresponding to the syllable, word, and
phrase presentation rates, providing evidence of concur-
rent neural tracking of hierarchical linguistic structures.
Critically, peaks at the word and phrase rate were not
observed when listeners were exposed to an unknown
foreign language, ruling out contributions of low-level
acoustic features.
In addition to correlational evidence linking neural

entrainment and speech processing, there is also emerg-
ing evidence that neural entrainment plays a functional
(causal) role in speech comprehension, as revealed by
studies that have manipulated neural entrainment (van
Bree, Sohoglu, Davis, & Zoefel, 2021; Kösem et al., 2018;
Riecke, Formisano, Sorger, Başkent, & Gaudrain, 2018;
Wilsch, Neuling, Obleser, & Herrmann, 2018; Zoefel,
Archer-Boyd, & Davis, 2018). Wilsch and colleagues
(2018) presented participants with speech in noise while
applying transcranial electrical currents in the shape of the
speech envelope, and found a systematic modulation of
speech intelligibility as a function of stimulation lag. Simi-
larly, Riecke and colleagues (2018) reported that transcra-
nial stimulation with speech-shaped currents improved
word recognition for speech that was presented in a
two-talker, cocktail-party stream, as well as for speech that
had been artificially stripped of critical rhythmic cues. In
another recent study, participants were presented with
sentences that always ended with an ambiguous word
(e.g., “tak” or “taak” in Dutch, containing a vowel ambigu-
ous between a short /a/ and a long /a:/; Kösem et al., 2018).
The initial part of the sentence—with a speech envelope
designed to contain a strong rhythmic component—was
presented at either a slow or fast rate, thereby producing
corresponding changes in neural entrainment. MEG
results showed that participants’ entrainment to the
speech rhythm persisted after the initial sentence stem
had been presented, and that this sustained entrainment
systematically biased participants’ perception of the
ambiguous word. Overall, these studies show that the
alignment of neural oscillations with external rhythms of
speech influences comprehension, providing evidence
for a functional relevance of neural entrainment in speech
processing.
Currently, there is less evidence on the functional

significance of neural entrainment as it operates during
statistical learning specifically. However, some initial evi-
dence related to this issue comes from a behavioral study
by Wang, Zevin, and Mintz (2017). By leveraging the same
paradigm used by Ding and colleagues (2016, 2017),
these authors induced “grammatical entrainment” in
participants by cyclically presenting four-word English
sentences following the same syntactic structure (e.g.,
“Brian puts it down”; “John turns these in”), followed
immediately by artificial language phrases containing
nonadjacent (AXB) dependencies. By manipulating the
alignment of the cyclic English structures and the nonad-
jacent dependencies in the artificial language, the authors

tested whether this form of entrainment influenced the
statistical learning of the artificial language. Critically,
participants successfully learned the nonadjacent depen-
dencies when they aligned, or occurred “in phase,” with
the cyclic English structures, but not when they occurred
out of phase. These results indicate that cyclically pre-
senting abstract, grammatical structures can induce a
form of entrainment in learners that subsequently influ-
ences statistical learning. Combined with the results
from Ding and colleagues (2016, 2017) demonstrating
neurophysiological tracking of the repeated syntactic
structures, it may be hypothesized that this paradigm
entrained neural activity to the syntactic structures con-
tained in the English sentences, resulting in behavioral
facilitation of phase-aligned structures. However, because
the study used only behavioral methods, the neural
mechanisms underlying these behavioral effects are not
yet known.

To summarize, although there is currently correlational
evidence linking neural entrainment to statistical learning
(Sherman et al., 2023; Moreau et al., 2022; Elmer et al.,
2021; Henin et al., 2021; Moser et al., 2021; Zhang et al.,
2021; Batterink, 2020; Choi et al., 2020; Ordin et al.,
2020; Batterink & Paller, 2017, 2019) and emerging causal
evidence showing that neural entrainment may play a
functional role in speech comprehension more broadly
(van Bree et al., 2021; Kösem et al., 2018; Riecke et al.,
2018; Wilsch et al., 2018; Zoefel, Archer-Boyd, et al.,
2018), there is little evidence on whether neural entrain-
ment contributes causally to statistical learning. Although
it has been repeatedly shown that neural entrainment
increases over exposure to structured input as statistical
learning progresses (Moreau et al., 2022; Elmer et al.,
2021; Moser et al., 2021; Zhang et al., 2021; Batterink,
2020; Choi et al., 2020; Ordin et al., 2020; Batterink &
Paller, 2017, 2019), an open question is whether this
increased entrainment largely reflects a downstream con-
sequence of the statistical learning process itself, such as
the enhanced perception of individual words in the
speech stream, or a mechanism that plays a functional
(supporting) role in learning. Addressing this question
requires an experimental approach, in which neural
entrainment itself is manipulated. If enhancing neural
entrainment at the word frequency during statistical
learning facilitates performance on subsequent tests of
learning, this would provide evidence that the neural pro-
cess (or processes) indexed by this neural entrainment
signal play a functional role in statistical learning. In
contrast, if boosting neural entrainment at the word
frequency has no impact on subsequent learning perfor-
mance, this would suggest that the processes reflected
by neural entrainment may largely reflect downstream
perceptual or cognitive consequences of the learning
processes itself, such as stronger word perception or an
increase in lexical search processes to the newly learned
words (Sanders, Newport, & Neville, 2002), rather than
influencing the learning process itself.
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The Current Study

The overall goal of the current study was to improve our
understanding of what observed neural entrainment sig-
nals during statistical learning reflect, particularly whether
such signals represent a cause or consequence of learning
(or both). To shed light on this issue, we rhythmically
modulated the neural dynamics during statistical learning
using task-irrelevant, continuous visual stimulation, and
then examined subsequent expressions of learning at
both the behavioral and neural level. While participants’
EEG was recorded, they listened to a continuous speech
stream made up of repeating trisyllabic nonsense words
while passively viewing one of three visual stimuli
designed to influence neural entrainment: (1) a looping
video showing a droplet of water falling from a leaf, with
a rhythmic cycle that aligned with the repeating words
(congruent condition); (2) the same looping video with
an adjusted cycle that differed in duration from the repeat-
ing words (incongruent condition), or (3) a completely
static image of the leaf (static condition; see Figure 1).

Posttask interviews suggested that at most, only one
participant correctly inferred that there was a synchroni-
zation in timing between the visual stimuli and the
repeating words, such that any effects on entrainment
could be generally attributed to implicit multisensory
integration, as opposed to strategic or conscious pro-
cesses on the part of the participant. After exposure to
the speech stream, participants completed two behav-
ioral tests of learning: a rating task, which required par-
ticipants to provide explicit familiarity ratings for words
from the stream and foil items, and a RT-based target
detection task, which required participants to respond
to target syllables embedded in continuous syllable
streams. These tasks preferentially capture explicit and
implicit aspects of statistical learning, respectively
(Batterink, Reber, Neville, & Paller, 2015).
Given previous correlational evidence linking neural

entrainment during statistical learning to subsequent
learning outcomes (Batterink, 2020; Choi et al., 2020;
Batterink & Paller, 2017, 2019; Kabdebon et al., 2015;
Buiatti et al., 2009), we hypothesized that rhythmically
enhancing neural entrainment at the relevant frequency
would facilitate statistical learning. We therefore pre-
dicted that participants in the congruent group (in which
neural entrainment at the word frequency should be
enhanced by the visual stimuli) would show enhanced
performance on the rating task and/or target detection
task compared with participants assigned to the static
condition. Furthermore, to the extent that the visual
manipulation at the incongruent frequency disrupted
entrainment to the word frequency, we expected that
participants in the incongruent group should show the
poorest performance on subsequent measures of
learning.

METHODS

Participants

On the basis of previous studies (Batterink & Paller, 2017,
2019), we aimed to include data from 20 participants per
group. Seventy participants were recruited at Western
University to participate in the study. The experiment
was undertaken with the understanding and written
consent of each participant. All participants were profi-
cient or native English speakers between 18–35 years
old. Ten participants were excluded from the final sample
because of technical issues, noisy data, or experiment
ineligibility (e.g., on medications that impact brain
functioning), resulting in a final sample of 60 participants
(39 female; mean age = 19.2 years). Participants were
compensated $14/hr or received course credit for their
time. All participants in the current study had normal
hearing and normal or corrected-to-normal vision, as well
as no prior history of neurological disorders. Participants
were randomly assigned to one of the three experimen-
tal conditions (congruent, incongruent, and static),

Figure 1. Summary of experimental tasks. During the exposure period,
participants were exposed to a continuous stream of trisyllabic
nonsense words while viewing one of three types of visual stimuli. In
two conditions, the visual stimuli consisted of a looping video of a water
droplet forming and then falling off a leaf, with a repetition cycle that
either aligned (congruent condition) or misaligned (incongruent
condition) with the word presentation rate of the speech stream. In the
third condition, a static image was presented. Following the exposure
period, participants completed two tests of statistical learning: the
rating task, primarily measuring explicit knowledge, and the target
detection task, primarily measuring implicit knowledge.
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determined by the order run (n = 20 per group, with
sequential order assignment, i.e., 1-2-3-1-2-3).

Stimuli

Auditory Stimuli

Twelve syllables were generated using an artificial speech
synthesizer (Apple’s text-to-speech application, voice
“Samantha,” set to “Fast” speaking rate) and recorded as
separate sound files in Audacity with a sampling rate of
44100 Hz. Syllable sound files were 300 msec or shorter
in duration. These syllables were concatenated to create
4 nonsense “words” ( pautoki, mailone, nurafi, gabalu;
syllables were taken from Batterink & Paller, 2017). To cre-
ate the continuous speech stream, these nonsense words
were presented at a rate of 300 msec per syllable (3.33 Hz)
in a predefined pseudorandom order, with the constraint
that the same word did not repeat consecutively. The
speech stream contained 1200 syllables (400 words), with
eachword represented an equal number of times through-
out the stream (100 presentations for each word).

Visual Stimuli

The visual stimuli were created by capturing frames (still
images) from a slow-motion video, which depicts a loop-
ing cycle of a droplet of water falling off a leaf and hitting
the surface of a body of water below. The video was
obtained from an online stock image website called
Deposit Photos (https://depositphotos.com/). Image sets
were created by calculating the total number of images
needed for a full video cycle at the desired frequency
(i.e., the time between the appearance of one droplet on
the leaf to the appearance of the next droplet), given the
monitor refresh rate (60 Hz). For the 1.11 Hz “congruent”
condition, a full cycle consisted of 54 images; for the
1.67 Hz “incongruent” condition, a full cycle consisted of
36 images. In the static condition, a single image of the leaf
was presented. For all three conditions, images were
presented at a rate of 60 images per second.
As mentioned previously, the congruent and incongru-

ent conditions differed in terms of the temporal relation-
ship between the video and the syllables in the speech
stream. In the congruent condition, one cycle of the video
was equivalent to the presentation rate of a trisyllabic
nonsense word (video cycle frequency = 1.11 Hz, word
presentation frequency 1.11 Hz). In the incongruent
condition, one cycle of the video was equivalent to the
presentation of two syllables in the stream, such that the
onset of a video cycle coincided equally frequently with
each of the three triplet positions (video cycle frequency =
1.67 Hz, word presentation frequency 1.11 Hz).

Procedure

After electrode setup, participants were seated in a sound-
attenuated booth at a comfortable viewing distance

(approximately 70 cm) from the monitor. Auditory stimuli
were presented at a comfortable listening level over com-
puter speakers positioned on either side of the monitor.
A visual summary of the protocol is shown in Figure 1.
Before beginning the statistical learning tasks, resting-
state EEG data were collected for 6 min 15 sec (data
not presented here). Participants were instructed to relax
and maintain focus on a fixation cross in the center of the
screen during this time.

Exposure Task

In all three conditions (congruent, incongruent, and
static), participants were presented with the continuous
speech stream while viewing visual stimuli presented on
the computer monitor. The visual stimuli began first, with
the auditory stimuli beginning 15 sec later, to establish
neural entrainment effects before the onset of the speech
stream. Participants in the congruent and incongruent
conditions, who viewed looping videos, were instructed
to visually fixate on the location in which the droplet of
water hits the surface below. Participants in the static con-
dition viewed a single static image taken from the video
and were instructed to maintain fixation on the tip of the
leaf. To disguise the true purpose of the entrainment
manipulation, participants were told that the aim of the
experiment was to test whether viewing videos (or images,
in the static condition) from nature helps people to relax
while listening to a nonsense language.

Rating Task

All tasks administered after the exposure task were identi-
cal across groups. First, participants completed a familiar-
ity rating task to assess explicit knowledge of the nonsense
words. For each trial, participants heard a trisyllabic item
and had to indicate via a button press how familiar that
item sounded based on the language they had just heard
(with 1 being very unfamiliar and 4 being very familiar).
The item was a word from the language ( pautoki, nurafi,
mailone, gabalu), a part-word consisting of a syllable pair
from the language along with an additional syllable from
another word (nuralu, maitoki, gabafi, paulone), or a
nonword consisting of syllables from the language that
never occurred together (nuloto, kimailu, paraba,
gafine). As in the exposure task, the stimulus onset asyn-
chrony between consecutive syllables within each item
was 300 msec. In total, the task consisted of 12 trials,
including 4 words, 4 part-words, and 4 nonwords. Because
of this low trial number, which precludes meaningful EEG
analysis, no EEG data were saved during this task.

Target Detection Task

Following the rating task, participants completed a
speeded target detection task to assess implicit knowledge
of the nonsense words. Each trial consisted of a short
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speech stream containing the four trisyllabic words, each
presented 4 times in pseudorandom order. Although we
had intended to present the target detection streams at
the same rate as the original exposure stream (300 msec
per syllable), because of a technical issue, syllables were
actually presented at a rate of ∼284.5 msec per syllable
(slightly faster than the original speech stream). For each
trial, participants were instructed to press a button every
time they heard a specific target syllable in the speech
stream. Both speed and accuracy were emphasized. At
the beginning of each trial, participants pressed a button
to hear the target syllable and then started the speech
stream via a second button press. Throughout the trial,
the phonetic spelling of the syllable remained on the
screen to remind participants which target syllable they
were listening for. As in the exposure stream, the same
word never repeated consecutively. In addition, target syl-
lables never occurred within the first or last words of the
stream. In total, each syllable in the language served as a
target 3 times, resulting in 36 total streams. Each stream
contained four target syllables, yielding 48 trials for each
triplet-position condition (word-initial syllable, word-
medial syllable, and word-final syllable). This task mea-
sures participants’ ability to use their acquired statistical
knowledge to optimize online processing, as reflected by
faster responses to more predictable syllables (i.e., those
occurring in later positions within a triplet). This facilita-
tion reflects participants’ ability to predict upcoming sylla-
bles based on the initial syllables already presented within
a word, and can be considered an implicit measure of
learning, capturing learning effects even in the absence
of explicit word knowledge (Batterink et al., 2015).

Posttask Interview

Following the experimental tasks, participants in the
congruent and incongruent groups completed an oral
posttask interview to assess their explicit awareness of the
relationship between the artificial language and the
dynamic visual stimulus. To fully capture low levels of
awareness, the interview began with questions that pro-
vided no specific information about the experimental
manipulation, revealing more specific information as the
interviewwent on. First, participants were asked to respond
yes or no as to whether they had noticed any connection
between the video and the sounds. Next, participants were
asked (yes/no) more specifically whether they had noticed
any association between the timing of the video and the syl-
lables in the stream. If they responded yes, they were then
asked to describe the association. Participants’ verbal
responses to this final open-ended question were tran-
scribed by the experimenter. On the basis of their recorded
responses to this final question, participants were then
coded as being fully aware of the contingency between
the video and word structure, partially or imprecisely aware
of the contingency, or completely unaware of the contin-
gency. As there was no actual 1:1 correspondence between

the word structure and the video cycle in the incongruent
condition, the responses from this group served as a basis
of comparison.
For each of these three questions, a Pearson chi-square

test was used to assess whether the proportion of partici-
pants who provided a given response (Q1 and Q2: yes/no;
Q3: aware/partially aware/not aware) differed between the
congruent and incongruent groups. Three participants out
of 40 did not contribute data to this task, as we began
administering the questionnaire only after a few initial par-
ticipants had already completed the experiment.
On the open-ended response, only 3 out 37 of partici-

pants (1 participant from the congruent group, 2 from
the incongruent group) offered statements indicating
awareness of the relationship between the structure of
the speech stream and the video (e.g., “when words were
said, drops happened”; “every time the water dropped it
would be a section of the word finishing”). However, note
that there was no actual 1:1 correspondence between the
words and video for the incongruent participants, such
that the two incongruent participants’ statements were
inaccurate. Another 16 participants were coded as partially
or imprecisely aware of some relationship between the
speech stream and video (e.g., “seemed to follow a similar
rhythm”; “every drop there was a syllable” [not actually the
case]). The remaining 18 participants offered either no
information or information that was irrelevant to the ques-
tion (e.g., “the language was weird to listen to”; “it would
repeat the same ones for a few times and then switch and
do new ones”) and were coded as unaware.

Behavioral Data Analyses

Familiarity Rating Task

Rating scores (1–4 scale) for each trial were assessed using
an ordinal regression with mixed effects, with word type
(word, part-word, nonword) as a within-subject factor,
condition (congruent, incongruent, static) as a between-
subjects factor, and subject intercept as a random effect.
Both word type and condition were modeled as categori-
cal factors, and rating score was treated as an ordinal var-
iable. Treatment coding was used for condition, with the
static group set as the reference condition, allowing us to
evaluate whether both the congruent and incongruent
groups individually differed from this reference. Polyno-
mial coding was used for word type to test the hypothesis
that familiarity ratings would be highest for words, inter-
mediate for partword, and lowest for nonwords.

Target Detection Task

Adopting the same criterion as previous studies in our lab-
oratory (Batterink & Paller, 2017; Batterink et al., 2015),
responses that occurred before 0 msec or after 1200 msec
of a target were considered false alarms and were not
included in further analyses. Given the length of this task,
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it is possible that performance may either improve
(because of online learning) or decline (because of
fatigue) as a function of trial number. Furthermore, previ-
ous work by Batterink (2017) found that RTs to target syl-
lables increased for targets occurring later in a given
stream. To account for these sources of variance, RTs were
modeled using a linear mixed-effects model, with predic-
tors including fixed effects of condition (congruent, incon-
gruent, static), triplet position (word-initial, word-medial,
word-final), stream within the task (1–36), target position
within the stream (4–45, i.e., in which position the target
occurred within a single stream; targets never occurred
within the first or final word), and the interaction between
triplet position and condition. Stream position and target
position within the stream were not variables of direct
interest but were included in the model as control vari-
ables. Following previous approaches and demonstrations
of linear influences of triplet position on RTs (with later
occurring targets within a triplet eliciting progressively
faster RTs; see Liu, Forest, Duncan, & Finn, 2023; Wang,
Köhler, & Batterink, 2023; Wang, Rosenbaum et al.,
2023; Moreau et al., 2022; Batterink & Paller, 2017, 2019;
Batterink et al., 2015), all predictors were modeled as con-
tinuous predictors except for condition, which was categor-
ical. Treatment coding was used, with the static group set as
the reference condition, allowing us to evaluate whether
both the congruent and incongruent groups individually
differed from this reference. Subject intercept was included
as a randomeffect to account for differences in baseline RTs
between participants. We confirmed that all reported
models successfully converged.

EEG Recording and Analysis

EEG was recorded at a sampling rate of 512 Hz using
a 64-channel Active-Two Biosemi system (Biosemi,
Amsterdam), set up according to the 10/20 system. Addi-
tional electrodes were placed on the left and right
mastoids, on the outer canthi of the left eye, and below
the left eye. Signals were recorded relative to the Common
Mode Sensor active electrode and then rereferenced
offline to the average of the left and right mastoid elec-
trodes. All EEG analyses were conducted using EEGLAB
(Delorme & Makeig, 2004) and ERPLAB (Lopez-Calderon
& Luck, 2014). Before epoching, data were band-pass
filtered from 0.1 to 30 Hz using an IIR Butterworth
filter, as implemented by pop_basicfilter in ERPLAB.

Exposure Period

Nonoverlapping epochs of 10.8 sec were extracted, time-
locked to the onset of every 12th word in the language and
corresponding to a duration of 12 words, or 36 syllables.
All epochs contained data that corresponded to continu-
ous auditory presentation (i.e., epochs occurring before
a break in recording were not extracted). Data were visu-
ally inspected to allow for manual rejection of noisy

epochs as necessary, although in the current data set, data
quality was high and all epochs were retained. Occasional
bad electrodes were identified and interpolated (mean =
0.8,max= 4 electrodes per participant). Each participant’s
data set contained between 32 and 33 epochs. Following a
previous study that used multimodal rhythmic stimuli
(Bauer, van Ede, Quinn, & Nobre, 2021), a surface Lapla-
cian transform was then applied to help separate contribu-
tions from auditory and visual areas, as implemented by
Cohen (2014). The surface Laplacian transform is a spatial
filter that minimizes volume conduction effects, increases
spatial resolution, and provides a reference-free represen-
tation of underlying neural generators (Bauer et al., 2021;
Cohen, 2014).

We quantified neural entrainment by measuring inter-
trial coherence (ITC) across all epochs in each individual
data set. ITC is a measure of event-related phase-locking
or phase synchronization across trials, which ranges from
0 to 1, with 0 indicating purely non-phase-locked (i.e.,
random) activity at a given frequency band, and 1 indicat-
ing strictly phase-locked activity (i.e., oscillations per-
fectly in phase across all epochs). For each participant,
the fast Fourier transform was applied to the individual
EEG epochs. Given the epoch length, this yielded a
frequency resolution of ∼0.0926 Hz, which produces
spectral estimates at frequency bins that include the word
presentation rate (1.11 Hz) and syllable presentation rate
(3.33 Hz). The phase component at each frequency was
then used to compute ITC, which is the circular sum
(absolute value) of the phases across trials at a certain
point in time. This procedure was carried out for all 64
scalp channels. Given the auditory nature of the task
and based on our prior results (Choi et al., 2020;
Batterink & Paller, 2017, 2019), we expected maximum
entrainment effects over auditory regions. We selected
12 bilateral fronto-central electrodes based on the fre-
quency of the word distribution entrainment effect in
the static condition, in which there was no dynamic visual
stimulus (FC1, FC3, FC5, T7, C3, C5; FC2, FC4, FC6, C4,
C6, T8). These electrodes correspond well with the
observed distribution and electrode groups selected by
previous studies of auditory entrainment that applied
Laplacian transforms (Bauer et al., 2021; Jaeger, Bleichner,
Bauer, Mirkovic, & Debener, 2018). For all subsequent
analyses, ITC values for each electrode within this region
were averaged together.

In a first stage analysis, we tested whether the visual
manipulation significantly influenced neural entrainment
as intended by conducting two separate ANOVAs on
the ITC values at our frequencies of interest (word =
1.11 Hz; syllable = 3.33 Hz), with group (congruent,
incongruent, static) as a between-subjects factor. We pre-
dicted that neural entrainment at the word frequency
should be higher in the congruent group compared with
the incongruent and static groups.

In a subsequent follow-up analysis, we assessedwhether
any increased neural entrainment at the word frequency in
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the congruent group (if observed) was because of mere
passive volume conduction from posterior-occipital
regions or whether it exceeded the values that would be
expected based on passive volume condition alone. Here,
we applied the general logic of super-additive interactions
in the multisensory integration field, which is commonly
used litmus test for demonstrating multisensory conver-
gence and integration (e.g., Stanford & Stein, 2007). The
logic here is that, if the neural response to a multisensory
stimulus is greater than the sum of the separate responses
to modality-specific components, this cannot be readily
explained by the recruitment of separate pools of unisen-
sory neurons and thus indicates multisensory integration
by multisensory neural populations (Stanford & Stein,
2007). Applying this logic to the current study, we rea-
soned that if the neural response at the word frequency
in the congruent group (reflecting a combination of visual
stimulation and repeating auditory patterns) exceeded the
sumof the independent responses produced by the words
alone and the visual stimuli alone (i.e., if A * V > A + V),
this would demonstrate cross-modal influence and inte-
gration of the visual stimuli within our neural substrates
of interest, over and above effects of passive volume con-
duction. To test this idea, we leveraged data from the
incongruent and static groups to estimate the neural
response produced by the auditory input and the visual
rhythm, in the absence of alignment between the hidden
words and the visual rhythmic cycle. We submitted ITC
values at 1.11 Hz (word frequency) and 1.667 Hz (corre-
sponding to syllable pairs and the visual stimulation cycle
in the incongruent group) across all participants to a
linear mixed-effects model, with frequency bin (1.11 Hz,
1.67 Hz), visual stimulation (with binary coding; 1 =
frequency of visual stimulation cycle, applied to 1.11 Hz
frequency in the congruent group and 1.667 Hz in the
incongruent group; 0 = no alignment, applied to all other
frequency and group combinations), and their interaction
modeled as fixed factors, and participant intercept mod-
eled as a random effect. Frequency and visual stimulation
were not modeled as random slopes because of conver-
gence issues. A significant interaction between frequency
(1.11 Hz, 1.667 Hz) and visual stimulation-word alignment
(1 or 0), supported by appropriate follow-up contrasts,
would provide evidence of a super-additive cross-modal
integration effect. This result would show that any
increased neural entrainment at the word frequency in
the congruent group exceeds the level attributable to
spreading activation from visual regions and would pro-
vide evidence that the auditory stimulation successfully
engaged the same relevant neural substrates that were
involved in processing the speech stream.

Target Detection Task

Next, we quantified neural entrainment during the test
phase to test whether the visual manipulation applied
during the exposure phase influenced subsequent neural

processing of the speech stream during the target detec-
tion task (here, in the absence of visual stimulation). We
hypothesized that participants in the congruent group
would show an increase in neural entrainment at the word
frequency during the subsequent test, which would
provide additional evidence of superior statistical learning
in this group.
For each target detection stream in the task, we

extracted an epoch with a duration of 12.8 sec, corre-
sponding to the time from the second word presentation
to the final word, yielding 36 epochs. We excluded data
corresponding to the initial word presentation to avoid
auditory onset effects triggered by the initial first few syl-
lables. Data were visually inspected, and occasional bad
electrodes were identified and interpolated (mean =
0.83 electrodes per participant). Any excessively noisy
epochs were manually removed (mean = 35.3 epochs
per participant remaining for analysis, min = 31 epochs
remaining). ITC was then computed using the same
general method as described above for the analysis of
the EEG data from the exposure period, using the
same electrode ROI. As the epoch length for this analysis
was 12.8 sec, this yielded a frequency resolution of
0.0781 Hz, which produces spectral estimates at fre-
quency bins that include the word presentation rate
(1.17 Hz) and syllable presentation rate (3.515 Hz). A
technical problem affected the data from one participant
in the incongruent condition, resulting in a sample of
only 19 participants (rather than 20) for this group.

Correlations between Measures

To assess correlations between EEG measures of neural
entrainment and behavioral performance, a composite
measure was derived for both the rating task and the target
detection task. For the rating task, a “rating score” was cal-
culated for each participant by subtracting the average
score for part-words and nonwords from the average score
for words. For this measure, a score of 3 would indicate
perfect sensitivity, with all values above 0 providing evi-
dence of learning (Batterink & Paller, 2017). For the target
detection task, mean RTs for each syllable position (word-
initial, word-medial, word-final) were calculated for each
participant, and a “RT prediction effect” was computed
as the proportion of RT decrease to third position targets
relative to initial position targets [(RT1 − RT3)/RT1]
(Batterink & Paller, 2019). Because decreases in RTs are
not independent of the overall speed of response (cf.
Siegelman, Bogaerts, Kronenfeld, & Frost, 2018), this
computation adjusts for potential differences in baseline
RTs between individuals, allowing us to compare statisti-
cal learning across individuals with different RT base-
lines. Larger positive values on the RT prediction effect
indicate greater facilitation because of statistical learning.
Pearson’s correlations were then computed between
neural entrainment to the word frequency and (1) the
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rating score and (2) the RT prediction effect, across all
participants.

RESULTS

Behavioral Results

Rating Task

Across all three groups, participants demonstrated signifi-
cant evidence of statistical learning, with words rated
as most familiar, followed by part-words, followed by non-
words as the least familiar (linear effect of word type: z =
−6.88, p < .001; see Figure 2A). However, in contrast to
our hypothesis, ratings did not significantly differ across
the three visual condition groups (congruent > static ×
linear contrast for trial type: z = −0.39, p = .69; incon-
gruent > static × linear contrast for trial type: z =
−0.087, p = .93).

Target Detection Task

Across all groups, we observed the expected decline in RT
as a function of syllable position, with progressively faster

RTs for more later, more predictable syllables (see
Figure 2B). In the initial model, stream position (4–45,
i.e., in which position the target occurred within a single
trial) was not found to be significant, F(1, 7783) = 0.171,
p = .68. We thus conducted a follow-up model that
included all the same factors as the original model, except
for the nonsignificant factor of stream position. The
second, simpler model revealed a significant effect of
triplet position, triplet position effect: F(1, 7783) =
496.20, p < .001, and an interaction between condition
and triplet position, Condition × Triplet Position: F(2,
7783) = 3.42, p = .033, with no main effect of condition,
Condition: F(2, 105) = 0.23, p = .79. In line with our
hypothesis, the congruent group showed a significantly
stronger triplet position effect compared with the static
group, t(17784) = −2.51, p = .012; parameter estimate
syllable position: M=−12.0 msec, SE= 4.78. In contrast,
the RT triplet position effect did not significantly differ
between the incongruent and static groups, t(17784) =
−0.61, p = .54.

Overall, accuracy for targets was high (mean = 91.3%,
SD = 6.0%), with approximately 10.5 (SD = 8.82) false
alarms per participant, and no significant differences
between groups, accuracy: F(2, 59) = 0.91, p = .40; false
alarms: F(2, 59) = 2.48, p = .093.

Behavioral Task Correlations

There was a moderate, significant correlation between
the rating score and the RT prediction effect, r(60) =
.32, p = .012, indicating that participants who were more
successful at discriminating words and foils on the rating
task also showed a stronger prediction effect on the tar-
get detection task.

EEG Results

Exposure Phase

As shown in Figure 3, all groups showed clear peaks in
neural entrainment at both the syllable and word frequen-
cies in canonical auditory electrodes, as well as the fre-
quency corresponding to the second harmonic of the
word presentation rate (∼2.22 Hz). As hypothesized, the
three groups showed significant differences in neural
entrainment at the word frequency within our indepen-
dently selected auditory ROI, consisting of 12 bilateral
fronto-central electrodes, F(2, 57) = 20.9, p < .001.
Planned contrasts revealed that the congruent group
showed significantly stronger word frequency entrain-
ment than the other two groups (contrast estimate =
0.16, SE= 0.024, p< .001). In contrast, word entrainment
in the static and incongruent group did not significantly
differ from one another ( p = .83). There were no signifi-
cant differences in syllable-level entrainment between
groups, F(2, 57) = 0.24, p = .78.

Figure 2. Behavioral results for the rating task (A) and target detection
task (B). The three groups showed similar performance on the rating
task. On the target detection task, the congruent group showed a
significantly greater triplet position effect to more predictable (third
syllable) targets, indicative of enhanced prediction and superior
statistical learning. Error bars represent standard error of the mean.
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Next, we conducted a follow-up analysis to test whether
phase-locking at the word frequency in the congruent
group reflects true engagement of the same relevant
neural substrates involved in processing the speech
stream, over and above effects of mere passive volume
conduction. To do this, we probed for evidence of a
super-additive response in the congruent group at the
word frequency (see Methods section). As expected,
based on the presence of statistical structure at the trisyl-
labic frequency, overall greater ITC values were found at

1.11 Hz (trisyllabic frequency) than at 1.67 Hz, bisyllabic
frequency; main effect of frequency: F(1, 70) = 33.9,
p < .001. In addition, ITC values differed as a function of
visual stimulation, main effect of visual stimulation: F(1,
88) = 82.1, p < .001. Critically, an interaction was found
between frequency and visual stimulation, F(1, 98) =
5.81, p = .018, such that ITC values were significantly
greater when the frequency of visual stimulation coincided
with the hidden words in the speech stream (i.e., 1.1 Hz
in the congruent group; parameter estimate for Word

Figure 3. Neural entrainment across the exposure period. (A) EEG ITC as a function of frequency and condition (congruent, incongruent, static).
Data in the line graph are averaged over 12 frontocentral bilateral electrodes, selected on the basis of the ITC distribution observed in the static
condition (in which no visual stimulation occurred), whose location is indicated by the red dots. Shaded regions represent the standard error of the
mean within each group. A significant group effect was observed at the word frequency; participants in the congruent condition showed significantly
greater neural entrainment at the word frequency than the other two groups. (B) Across groups, a significant interaction was observed between
frequency (1.11, 1.67) and visual stimulation, indicating the effect of visual stimulation was greater when stimulation occurred at the same frequency
as the repeating words and demonstrating a super-additive cross-modal response to auditory structure and visual stimulation. (C) Distribution of ITC
across the scalp, at the word frequency (left) and syllable frequency (right), within each group. ITC at the word frequency in the congruent group is
plotted at a different scale in the inset for better resolution.
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Frequency × Visual Stimulation interaction = 0.069, SE=
0.028, 95% CI [0.012, 0.125]; see Figure 3B). This interac-
tion indicates that the effect of the visual stimulation was
not equal across the two frequencies (1.11 Hz and 1.67Hz).
This result suggests that participants in the congruent
group showed an increase in neural entrainment at the
word frequency that cannot be accounted for bymere pas-
sive volume conduction alone, as the enhancement is
greater than simple additive effects of trisyllabic auditory
structure and visual stimulation (as estimated under con-
ditions and frequencies when visual stimulation and audi-
tory structure do not align).
Finally, both the congruent and incongruent groups

showed large ITC peaks as their respective visual frequen-
cies over occipital electrodes, reflecting strong visual
entrainment to the stimulus (Figure 4). We found no
significant differences in ITC values between the two
groups at their respective visual stimulation frequencies,
F(1, 38) = 0.34, p = .56, indicating that the strength of
the visual entrainment was similar between the two
groups.

Target Detection Task

The three visual condition groups showed significantly dif-
ferent neural entrainment at the word frequency, group
effect: F(1, 56) = 5.29, p = .008 (Figure 5A). Consistent
with our hypothesis, planned contrasts indicated that
the congruent group demonstrated significantly higher
word-level entrainment compared with the incongruent
and control groups, providing evidence of superior seg-
mentation of the speech stream (contrast estimate =

0.047, SE = 0.15, p = .002). In contrast, neural entrain-
ment at the word frequency did not differ between the
incongruent and static image groups (contrast estimate =
0.008, SE = 0.017, p = .66). As expected, neural entrain-
ment at the syllable frequency did not differ between
groups, group: F(1, 56) = 0.068, p = .93.

Behavioral-neural Entrainment Correlations

Finally, we examined whether neural entrainment during
exposure predicted behavioral performance on the two
measures of statistical learning. Counter to our prediction,
neural entrainment at the word frequency (during the
exposure period, computed over our auditory ROI) did
not significantly predict the RT prediction effect (r =
.21, p= .10), nor did it significantly predict the rating score
(r = .16, p = .23). Interestingly, however, neural entrain-
ment at the word frequency during the target detection
task did show a significantly correlationwith the RT predic-
tion effect (r = .34, p = .008; Figure 5B), indicating the
stronger entrainment to words during the task itself was
related to a stronger behavioral prediction effect.

Posttask Interview

Participants were initially asked whether they had noticed
any connection between the video they had observed and
the sounds (Q1), and then whether they had noticed any
association between the timing of the video and the sylla-
bles in the stream (Q2). The proportion of participants
who responded “yes” to these questions did not differ
between groups, Q1: X2(1, N = 37) = 0.65, p = .42; Q2:

Figure 4. Neural entrainment over occipital electrodes during the exposure period. EEG ITC is plotted as a function of frequency and condition
(congruent, incongruent, static). Red dots indicate the electrode locations for this analysis. Shaded regions represent the standard error of the mean
within each group. The congruent and incongruent group showed similar ITC values at their respective visual stimulation frequencies.
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X2(1, N= 37) = 2.28, p= .13; interestingly, a numerically
higher proportion of participants from the incongruent
group endorsed this statement. Participants who
endorsed an association between the video and audio
streams were then asked to describe this association. On
this open-ended response, the proportion of participants
who were coded as aware, partially aware, or unaware also
did not differ by group, X2(2, N = 37) = 0.78, p = .78.
Overall, these results suggest that participants in the
incongruent condition—who in reality had not been
presented with words that aligned with the repeating
video loop—were as likely as participants in the congru-
ent condition to indicate that there was a relationship
between the structure of the stream and the video.
Although this measure is subjective as it relies on partic-
ipants’ verbal reports, these results suggest that very few
(at most one) participants in the congruent group gained

accurate, explicit knowledge of the speech structure-
video contingency.

DISCUSSION

The goal of the current study was to better understand
whether neural entrainment plays a functional role in sta-
tistical learning, or whether these recorded signals largely
reflect the downstream consequences of learning. To shed
light on this issue, we tested whether modulating neural
entrainment during statistical learning impacts subse-
quent learning outcomes. While participants listened to
a structured speech stream, we attempted to manipulate
neural entrainment using continuous rhythmic visual stim-
ulation. Our initial set of analyses served as a manipulation
check, demonstrating that this cross-modal manipulation
was successful. Relative to participants in incongruent

Figure 5. Neural entrainment during the target detection task. (A) EEG ITC values as a function of frequency and condition (congruent, incongruent,
static). Data in the line graph are averaged across the same fronto-central region as for the exposure phase analysis, indicated by the red dots. Shaded
regions represent the standard error of the mean within each group. Topographical plots show the distribution of ITC values across the scalp at the
word frequency. Participants in the congruent condition showed a significant enhancement in neural entrainment at the word frequency. (B) A
significant correlation was observed between neural entrainment at the word frequency during the target detection task and the RT prediction effect.
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stimulation and control conditions, participants in the
congruent group—who viewed a visual stimulus that was
consistent with the embedded words in the speech
stream—showed stronger neural entrainment at the word
frequency within our auditory electrode ROI. Importantly,
this entrainment response at the word frequency was
significantly greater than the additive responses to struc-
tured speech and visual stimulation alone, reflecting a
cross-modal integration response over and above effects
of mere volume conduction. These results demonstrate
that the visual rhythm successfully engaged auditory-
relevant neural substrates involved in processing the
speech stream, confirming that our visual manipulation
successfully altered neural dynamics within relevant neu-
ral populations as intended. Posttask interviews revealed
that only one participant in the congruent group correctly
reported the temporal alignment between the visual
rhythm and the hidden words in the speech steam, indi-
cating that the increase in neural entrainment occurred
largely outside of participants’ awareness and strategic
control, and thus reflects implicit cross-modal integration
at the neural level.
After the exposure phase, participants’ statistical learn-

ing was assessed using explicit and implicit tests of word
knowledge. Critically, on the target detection task, we
found that participants in the congruent condition showed
a significantly stronger priming effect, responding more
quickly to predictable (later positioned) syllables than
participants in the other two conditions. Furthermore,
participants in the congruent condition also showed stron-
ger neural entrainment at the word frequency over our
auditory ROI, which we interpret to reflect enhanced
segmentation and/or perception of the word units during
re-exposure to the same artificial language. These findings
indicate that participants in the congruent group gained
greater sensitivity to the hidden word structure of the
speech stream, enabling them to better perceive embed-
dedwords and predict upcoming syllables. In addition, the
neural entrainment response to words (during the implicit
test) significantly correlated with participants’ prediction
effect at the behavioral level. In contrast, on the explicit
word rating task, participants showed similar levels of
learning, with no significant group effects. These results
indicate that boosting neural entrainment at the relevant
frequency during exposure to regularities facilitates statis-
tical learning asmeasured implicitly, at both the neural and
behavioral levels. Taken together, these findings suggest
that neural entrainment is a facilitative mechanism and
not simply an outcome of statistical learning.

Visual Stimulation Modulated Neural Entrainment
within Targeted Auditory Regions

As expected, our rhythmic visual stimulus produced a
maximal entrainment response over posterior-occipital
scalp regions, consistent with the well-known general
topography of visual EEG responses (e.g., Müller et al.,

1998; Clark, Fan, & Hillyard, 1994). However, in the case
of the congruent condition—in which the words in
the speech stream aligned with the visual rhythmic
stimulation—effects of the visual stimulation were
observed well beyond posterior regions of the scalp,
including within our more fronto-central auditory ROI.
For several reason, we believe that this boost in neural
entrainment at the word frequency in the congruent
group over auditory electrodes reflects more than just pas-
sive volume conduction. First, we applied a Laplacian filter
to separate auditory and visual sources. The topography
observed in the congruent group (as well across the other
two groups more generally) suggests that this transform
effectively separated these two stimulus sources, revealing
a clear frontocentral bilateral distribution for auditory
stimuli and a posterior-occipital distribution for visual
stimuli, as has been shown in previous studies using a
Laplacian transform (Bauer et al., 2021; Jaeger et al.,
2018; Kayser & Tenke, 2015). More importantly, partici-
pants in the congruent group showed a super-additive
neural entrainment response at the word frequency over
our auditory electrode ROI. That is, the neural entrain-
ment response in the congruent group exceeded the esti-
mated independent contributions from word processing
and visual processing alone, as modeled from data in the
incongruent and static groups. This result indicates that
multisensory integration occurred between the auditory
stream and visual rhythm at some level, producing an
enhanced neural response that cannot be attributed
merely to the independent sensory effects of each sepa-
rate stimulus stream. These EEG results can be thought
of as a manipulation check, showing that our visual manip-
ulation influenced neural entrainment to the auditory
stream as intended.

Previous studies of cross-modal interactions have
shown that sensory input in one modality (e.g., vision)
can influence neural activity in the sensory cortex of
another modality (e.g., audition; Mégevand et al., 2020;
Atilgan et al., 2018; Luo, Liu, & Poeppel, 2010; Kayser,
Petkov, & Logothetis, 2008; see Bauer, Debener, & Nobre,
2020, for a review). For example, in the ferret, Atilgan and
colleagues (2018) showed that visual stimuli shape how
auditory cortical neurons respond to sound mixtures,
enhancing the representation of the sound that is tempo-
rally coherent with the visual stimuli. The authors also
demonstrated that visual information shifted the phase
of ongoing oscillations in auditory cortex, supporting the
role of neural oscillations in the integration and enhance-
ment of coherent multisensory input. Similarly, in
humans, the phase of low-frequency neural activity in
auditory cortex tracks unisensory visual speech, as
reflected by mouth movements (Mégevand et al., 2020).
This mechanism may underlie the well-known benefit of
visual speech cues on speech comprehension (Sumby &
Pollack, 1954). Interestingly, temporally coherent visual
input can benefit auditory processing even when the
coherence occurs between stimulus features that are
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completely task-irrelevant (Maddox, Atilgan, Bizley, & Lee,
2015). Extending these results, in the current study, the
temporally coherent visual stimulus (in the congruent
condition) appears to have directly influenced regions
related to auditory processing, which we speculate may
have occurred by phase-shifting or aligning ongoing oscil-
lations with the trisyllabic word structure.

Participants in the Congruent Group Showed
Enhanced Prediction and Word Entrainment on the
Subsequent Target Detection Task

Our key behavioral finding was that participants in the
congruent condition—who experienced a boost in neural
entrainment at the word frequency during exposure—
showed an enhanced RT prediction effect on the subse-
quent target detection task, responding more quickly to
predictable, later positioned syllables compared with the
other two groups. Participants in the congruent group also
showed significantly greater neural entrainment at the
word frequency during this same task. In addition, a signif-
icant correlation was found between participants’ neural
entrainment to words during the target detection task
and their RT prediction effect, suggesting that participants
whose perception of the stream was more biased toward
the word-like units were also better able to predict
upcoming syllables. Taken together, these results indicate
that participants in the congruent group gained greater
sensitivity to the hidden structure of the speech stream
during exposure. Because of their superior statistical
learning, they were then better able to segment the com-
ponent words and to predict upcoming syllables during
re-exposure to the speech stream (e.g., Ordin et al., 2020;
Batterink & Paller, 2017; Buiatti et al., 2009).

These results converge with previous findings that
grammatical entrainment to repeated English phrases
facilitates statistical learning of compatible, aligned struc-
tures in an artificial language (Wang et al., 2017). Although
Wang and colleagues relied only on behavioral methods, it
is possible that their experimental manipulation may have
had similar effects on neural entrainment, producing neu-
rophysiological tracking of the syntactic structures (e.g.,
Ding et al., 2016, 2017) that persisted long enough to
influence parsing of the subsequent artificial language
structures. Taken together, these findings suggest that
alignment of neural processes to relevant structures has
measurable effects on statistical learning at the behavioral
level, and provide support for our original hypothesis that
enhancing neural entrainment at the frequency of the
hidden word structure in the incoming auditory stream
facilitates statistical learning.

As mentioned previously in the Introduction, the
current results (as well as previous studies on neural
entrainment during statistical learning) do not provide
direct evidence of neural entrainment in the narrow sense,
which invokes the presence of an endogenous neural
oscillator that adjusts its frequency and/or phase to align

with rhythmic sensory input (Obleser & Kayser, 2019).
Disentangling true endogenous oscillatory activity from
neural responses that are simply evoked by rhythmic input
is an issue that is beyond the scope of the current study
and will require additional studies incorporating careful
and clever experimental design (Zoefel, ten Oever, et al.,
2018). Although it is not yet known whether the neural
mechanism(s) reflected by the observed entrainment sig-
nal in this kind of artificial word segmentation paradigm is
inherently oscillatory in nature, we have shown that rein-
forcing this dynamic through task-free cross-modal stimu-
lation impacts learning outcomes. These results provide
insight into the nature of the measured neural entrain-
ment response to words during statistical learning, sug-
gesting that the neural process (or processes) indexed
by this neural entrainment signal play a functional role in
statistical learning.
Although we cannot make claims about the existence of

endogenous oscillators based on the current data, our
findings can be speculatively interpreted in the context
of general neural entrainment models (Obleser & Kayser,
2019; Gross et al., 2013; Thut, Miniussi, & Gross, 2012;
Schroeder & Lakatos, 2009). These models propose that
the encoding of a given stimulus relies on a neural popu-
lation with its own preferred, intrinsic firing rates. When
confronted with a quasirhythmic stimulus, the neural pop-
ulation may slightly shift its firing rate, and/or the phase of
its firing, such that an incoming stimulus will arrive during
a phase of high excitability. In turn, this leads to amplifica-
tion of the stimulus and more efficient processing. This
general framework has been used to explain the benefit
of multisensory cues on processing (Bauer et al., 2020;
Lakatos, Chen, O’Connell, Mills, & Schroeder, 2007). For
example, Schroeder, Lakatos, Kajikawa, Partan, and Puce
(2008) have proposed that viewing a speaker’s face
improves speech intelligibility because the predictive
visual input resets or shifts the phase of ongoing neural
oscillations in auditory cortex so that linked auditory input
arrives at the optimal oscillatory phase. By extension, in
the congruent condition of the current study, the compat-
ible visual rhythmic cue may have shifted the phase or
firing rate of some proportion of the relevant neural pop-
ulation to align with the word structure of the speech
stream. This in turn could align peaks of neural excitability
with the hiddenword structure, potentially facilitating pro-
cessing at key moments of the signal (e.g., word onsets)
and leading to enhanced perception of the component
words. We reiterate that this explanation remains specula-
tive and must be tested by future research that is specifi-
cally designed to disentangle contributions of endogenous
oscillatory processes and from the reinforcement of dis-
crete neural responses more generally.

Unexpected Findings

We expected (and intended) that the incongruent visual
stimulation would interfere with neural entrainment to
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the words, resulting in reduced entrainment at the word
frequency relative to the static group. However, partici-
pants in the incongruent group showed very similar levels
of neural entrainment as participants in the static group.
Thus, although congruent visual signals enhanced neural
entrainment to words, incongruent visual signals did not
reduce entrainment. Perhaps unsurprisingly given the null
effects observed at the neural level, we also found no
behavioral differences between the incongruent and static
groups on subsequent learning tests. Overall, these results
suggest that participants may downweigh or discard
competing sensory input that is uninformative or nonpre-
dictive of statistical structure in the environment, instead
prioritizing the signal that contains to-be-learned regular-
ities. Our results converge with the findings of Cunillera,
Càmara, Laine, and Rodríguez-Fornells (2010), who
manipulated the presentation of line drawings relative to
an ongoing continuous speech stream. Although synchro-
nous, rhythmic visual input that temporally coincided with
word boundaries improved statistical learning relative to
an audio-only condition, arrhythmic or asynchronous
visual information did not interfere with learning. This
conclusion is also consistent with previous evidence that
statistically structured streams of information receive
attentional priority over random or noisy streams (Forest,
Siegelman, & Finn, 2022; Yu & Zhao, 2015; Zhao, Al-
Aidroos, & Turk-Browne, 2013). Taken together, these
prior findings support our interpretation that learners sim-
ply discard visual information that is noninformative and
serve to highlight the relative automaticity or obligatory
nature of linguistic statistical learning, in line with previous
results (Batterink & Paller, 2019; Fernandes, Kolinsky, &
Ventura, 2010; Saffran et al., 1997).
Another unexpected finding was that congruent visual

stimulation did not result in better performance on the
familiarity rating task, our explicit measure of learning.
Although participants in all three groups showed signifi-
cant evidence of learning on this task, performance did
not differ among the groups. Thus, boosting neural
entrainment at the word frequency during exposure
enhanced the subsequent implicit expression of statistical
learning, but not explicit memory for the learned words.
There are a few possible explanations for this finding. First,
the target detection task has been previously found to be a
more sensitivemeasure of learning compared with explicit
learning measures; it reveals learning effects in a greater
number of individuals compared with the classic explicit
force-choice recognition task (Pinto et al., 2022; Batterink
et al., 2015), is more sensitive to a between-participants
attentional manipulation compared with the explicit rating
task (Batterink & Paller, 2019), and correlates more
robustly with neural entrainment compared with other
behavioral measures (Pinto et al., 2022; Batterink & Paller,
2017, 2019). Therefore, one possibility is that the familiar-
ity rating is simply insufficiently sensitive to capture group
differences, at least with the current power. An alterna-
tive explanation concerns the nature of the learned

representations that are expressed on the two tasks. As
described in the Results section, the vast majority of par-
ticipants were largely unaware of the temporal alignment
between the visual rhythm and the embedded words,
suggesting that the observed learning advantages
occurred through neural processes outside of their con-
scious strategy and control. Thus, enhancing neural
entrainment at the relevant word frequency may have
more strongly facilitatedmoment-by-moment perception,
segmentation, and prediction processes—as expressed
most easily through online performance—rather than
directly enhancing explicit memory for the learned words,
as assessed on the rating task. Related to this point, on the
rating task, a consistent finding is that the group average
typically shows less than a 1-point difference between
words and nonwords (where a difference of 3 would indi-
cate optimal performance on the 4-point rating scale;
Wang, Köhler et al., 2023; Wang, Rosenbaum et al., 2023;
Moreau et al., 2022; Batterink & Paller, 2017, 2019). This
moderate level of performance suggests that participants
do not generally acquire strong or precise explicit memory
representations of the component words. Given the
general difficulty of this task, it may be less likely to capture
the effects of subtle shifts in neural entrainment patterns
during statistical learning. Future studies could consider
incorporating additional measures of statistical learning—
both implicit and explicit—to further test these ideas.

Finally, we did not find a significant correlation between
neural entrainment during the exposure period and subse-
quent prediction effects on the target detection task, as we
had initially expected based on our prior studies. This cor-
relation was in the positive direction, as predicted, but
failed to reach significance ( p = .10). Although neural
entrainment has often been found to correlate with subse-
quent performance on postlearning tests (Batterink, 2020;
Choi et al., 2020; Batterink & Paller, 2017, 2019; Kabdebon
et al., 2015; Buiatti et al., 2009), this is not always the case
(Moreau et al., 2022; Smalle et al., 2022; Zhang et al., 2021;
Ordin et al., 2020). Part of this inconsistency across studies
may stem from the field’s lack of a “ground truth” indica-
tion of statistical learning performance (Pinto et al., 2022);
even at the behavioral level, different measures of statis-
tical learning often do not correlate across participants
and have been theorized to reflect different aspects of
statistical learning (Isbilen, McCauley, Kidd, & Christiansen,
2020; Batterink et al., 2015; Franco, Eberlen, Destrebecqz,
Cleeremans, & Bertels, 2015). In addition, in the current
study, neural entrainment at the time of exposure may
have been affected (or obscured) by individual differ-
ences in cross-modal integration of the visual stimulus
and auditory stream. That is, independently of the statis-
tical learning task, the magnitude of the super-additive
effect of cross-modal integration may not have been con-
sistent across participants, which would weaken the over-
all relation between neural entrainment at exposure and
performance on later tasks of learning. However, as previ-
ously described, we did find a correlation between neural
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entrainment to words during the target detection task
itself and the behavioral prediction effect, an effect that
was not tested by previous studies. This finding supports
the general correspondence between neural entrainment
to words and statistical learning effects as assessed at the
behavioral level.

Limitations and Future Directions

Neural entrainment in the present study was manipulated
cross-modally using a visual stimulus, rather than directly
using brain stimulation methods (cf. Riecke et al., 2018;
Wilsch et al., 2018), which limits on the mechanistic
insights that can be drawn. Specifically, an argument could
be made that neural entrainment was enhanced because
the congruent visual rhythm provided a cue to learn word
boundaries, by visually reinforcing the statistical regulari-
ties. We consider this argument carefully below.

We introduced our visual stimulus to participants as
a task-irrelevant nature video designed to encourage
relaxation, with the intention of disguising the temporal
alignment between the visual stimuli and speech stream
structure. In addition, the visual stimulus was smoothly
continuous, consisting of a repeating cycle in which each
frame slightly differed from the last, rather than discrete
pulses that would provide clear onset cues to word bound-
aries. We hoped that these features would disguise the
temporal alignment between the visual stimuli and speech
stream structure in the congruent condition. The results of
the posttask interview suggest that this disguise was
successful; as previously described, very few, if any, partic-
ipants in the congruent condition reported awareness of
the congruency between the speech structure and visual
rhythm. The inference that participants in the congruent
condition did not use the visual stimulus as an explicit cue
to strategically discover word boundaries in the stream is
further supported by the finding that they achieved similar
performance on the rating task, our explicit measure of
word knowledge. If participants in the congruent group
had indeed strategically used the visual stimulus as an
explicit cue for decoding words, we would expect them
to correspondingly have higher levels of explicit word
knowledge. Thus, the boost in neural entrainment at the
word frequency cannot be readily attributed to conscious,
strategic processes on the part of the participant, but
instead reflects multisensory integration between the
audio and visual stimuli, occurring outside of participants’
awareness.

Nonetheless, the visual stimulus may still have provided
an implicit cue for word boundaries, reinforcing the
relevant word rhythm and facilitating learning outside of
participants’ conscious awareness. However, we would
consider the idea of implicit cueing and increased neural
entrainment at theword frequency to bemutually compat-
ible with one another, representing two sides of the same
coin. As an analogy, a well-documented finding is that
speech signals are consistently more intelligible when

the listener has access to both audio and visual input
(e.g., the speaker’s mouth; Van Engen, Dey, Sommers, &
Peelle, 2022; Sommers, Tye-Murray, & Spehar, 2005;
Arnold & Hill, 2001; Erber, 1975; Sumby & Pollack,
1954). In particular, the opening of the mouth is associ-
ated with louder amplitudes, which provides clues about
the rhythmic structure of speech and helps listeners
predict incoming information (Van Engen et al., 2022;
Chandrasekaran, Trubanova, Stillittano, Caplier, &
Ghazanfar, 2009). This benefit of visual information on
speech processing occurs implicitly, without requiring
conscious judgments or decision making about the two
sources of input. At the behavioral level, access to visual
speech information may thus be thought of as providing
an implicit, convergent cue to incoming speech sounds,
facilitating speech comprehension. A proposed neural
mechanism for this effect is neural entrainment: Visual
information has been shown to result in enhanced
entrainment of neural oscillatory activity in auditory cortex
to the amplitude envelope of speech (Crosse, Butler, &
Lalor, 2015; Zion Golumbic et al., 2013; Luo et al., 2010;
Schroeder et al., 2008). In other words, visual information
may serve as an implicit cue by enhancing neural activity in
relevant networks, with these two concepts reflecting
different levels of description (cognitive vs. neural). In
the current study, we have shown that congruent visual
stimulation results in both increased neural entrainment
at the target (word) frequency as well as stronger perfor-
mance on our implicit measure of statistical learning. We
interpret this increase in neural entrainment as a potential
mechanistic explanation for how the congruent visual
stimulation drives the observed learning advantage.
Of course, as mentioned previously, our understanding

of what precisely this increase in the neural entrainment
signals reflect—and whether such effects stem from a true
adjustment of endogenous oscillators in line with the
repeating regularities—is currently limited. Thus, to call
this “entrainment” in the narrower sense (Obleser &
Kayser, 2019), future studies are needed to disentangle
the potential contribution of stimulus-driven cues from
the contributions of ongoing, endogenous oscillatory
processes. One promising approach would involve
manipulating neural entrainment directly using transcra-
nial electrical stimulation, following previous studies in
the speech comprehension literature (Riecke et al.,
2018; Wilsch et al., 2018).

Conclusions

The current findings show that boosting neural entrain-
ment at the same frequency as the underlying statistical
regularities during exposure to structured input facilitates
subsequent expression of statistical knowledge, suggest-
ing that entrainment to rhythmic input plays a functional
role in statistical learning. Although the speech stream in
the current study was isochronous, neural entrainment
does not depend on a stimulus being perfect rhythmic,
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but has also been implicated in the processing of natural
(quasirhythmic) speech, as we described earlier (e.g.,
Meyer, 2018; Gross et al., 2013; Giraud & Poeppel, 2012;
Peelle & Davis, 2012). Entrainment at delta and theta fre-
quencies is related to an individual’s ability to understand
speech (Park, Ince, Schyns, Thut, & Gross, 2015; Doelling,
Arnal, Ghitza, & Poeppel, 2014; Peelle, Gross, & Davis,
2013) and is thought to support the segmentation of the
continuous speech stream into timescales corresponding
to linguistic units, including words and phrases (Meyer,
2018; Gross et al., 2013; Giraud & Poeppel, 2012; Peelle
& Davis, 2012; Ghitza, 2011; Poeppel, 2003).
Given this framework, our results may set the stage for

future work aimed at revealing novel ways to boost statis-
tical learning and related aspects of language acquisition.
For example, to aid in the discovery of words in continu-
ous speech, second language learners or children with
language impairments may benefit from viewing predic-
tive visual cues to word onsets while listening to target
speech. Through cross-modal integration, this type of
manipulation could allow neural activity in auditory-
sensitive regions to optimally entrain to word onsets,
facilitating language learning. Furthermore, neural
entrainment has been found to be enhanced to song com-
pared with speech (Vanden Bosch der Nederlanden,
Joanisse, & Grahn, 2020), and time-compressed speech
is understood more easily when silent gaps are inserted
into the signal periodically (Ghitza & Greenberg, 2009).
Thus, another possible route to facilitating speech seg-
mentation of a target language would be by manipulating
the speech signal itself, through alterations that increase
the rhythmicity or predictability of word units. Exposing
learners to an optimized, more rhythmic speech signal at
early learning stages may help to scaffold language
learning by enhancing neural entrainment, similar to
known benefits of infant-directed speech (Nencheva &
Lew-Williams, 2022).
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