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A B S T R A C T   

Our brains are capable of discriminating similar inputs (pattern separation) and rapidly generalizing across in
puts (statistical learning). Are these two processes dissociable in behavior? Here, we asked whether cognitive 
aging affects them in a differential or parallel manner. Older and younger adults were tested on their ability to 
discriminate between similar trisyllabic words and to extract trisyllabic words embedded in a continuous speech 
stream. Older adults demonstrated intact statistical learning on an implicit, reaction time-based measure and an 
explicit, familiarity-based measure of learning. However, they performed poorly in discriminating similar items 
presented in isolation, both for episodically-encoded items and for statistically-learned regularities. These results 
indicate that pattern separation and statistical learning are dissociable and differentially affected by aging. The 
acquisition of implicit representations of statistical regularities operates robustly into old age, whereas pattern 
separation influences the expression of statistical learning with high representational fidelity and is subject to 
age-related decline.   

1. Introduction 

Our daily life consists of many repeated activities, such as eating 
breakfast and commuting to work. To function effectively, we need to be 
able to discriminate between highly overlapping but ultimately distinct 
events and to generalize across overlapping events. For example, we 
must remember where we parked our car this morning, rather than the 
day before, while also being able to generalize across multiple days in 
order to appreciate that one part of the lot regularly tends to have more 
empty spots than another. Although most commonly discussed in the 
context of episodic memory, discrimination and generalization also play 
crucial roles in the context of language acquisition. For example, chil
dren who learn their native language and adults who learn a second 
language need to distinguish the sound of a new word (e.g., “write”) 
from previously encountered words (“white”) that sound similar but 
have distinct meanings. By generalizing across their multiple encounters 
with these two words, they also learn that the sound “ing” is more likely 
to follow “write” than “white”. 

These examples build on processes of pattern separation and 

statistical learning, respectively. Pattern separation refers to the crea
tion of discrete orthogonalized representations of similar inputs. It al
lows us to distinguish unique events with many overlapping features in 
memory. On the other hand, statistical learning is the more gradual 
process of becoming sensitive to similarities shared across multiple 
events, supporting the extraction of statistical regularities across inputs 
over time. One critical difference between these two types of learning 
that has been highlighted in the literature is that pattern separation 
allows for learning based on single snapshots (one-shot learning), 
whereas statistical learning requires the extraction of repeated structure 
over extended time periods (Schapiro, Turk-Browne, Botvinick, & Nor
man, 2017). 

While it is widely acknowledged that pattern separation and statis
tical learning are conceptually different processes, whether they operate 
independently remains largely unknown. A recently proposed compu
tational model suggests that each process relies on computations that are 
implemented by distinct neural pathways, suggesting separation at the 
neural level (Schapiro et al., 2017). Specifically, the model hypothesizes 
that pattern separation and statistical learning are performed by 
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separate pathways within the hippocampus, the trisynaptic pathway and 
the monosynaptic pathway, respectively. The trisynaptic pathway pro
jects from the entorhinal cortex to hippocampal subregion CA1 through 
the dentate gyrus and CA3, two subregions that have been consistently 
implicated in pattern separation (e.g., Berron et al., 2016; Leutgeb, 
Leutgeb, Moser, & Moser, 2007). In contrast, the monosynaptic pathway 
projects directly from the entorhinal cortex to CA1 and is considered to 
support statistical learning. A neural network model that simulated 
these hippocampal subregions demonstrated pattern separated repre
sentations in the dentate gyrus and CA3 and representations that re
flected statistical learning in CA1, supporting the hypothesis that the 
trisynaptic and monosynaptic pathways support pattern separation and 
statistical learning, respectively (Schapiro et al., 2017). 

Behavioral research that speaks to the proposed independence of 
these computational processes is limited at present, as research on 
pattern separation and statistical learning has largely proceeded inde
pendently, and has made use of different tasks and stimulus materials (e. 
g., Frost, Armstrong, & Christiansen, 2019; Saffran, Aslin, & Newport, 
1996; Yassa & Stark, 2011). However, we recently developed a set of 
tasks for direct comparison with speech-based stimuli. In neuropsy
chological research, we showed that an individual with circumscribed 
bilateral dentate gyrus lesions (affecting the trisynaptic hippocampal 
pathway) demonstrated a deficit in pattern separation alongside intact 
expression of statistical learning, suggesting a dissociation between 
these two processes (Wang et al., 2023). Still, it remains unclear whether 
these two processes can also be dissociated behaviorally in individuals 
without brain lesions. Of particular theoretical importance in any such 
comparison is also the manner in which knowledge about statistical 
regularities in speech sounds is probed. In our previous neuropsycho
logical study, we found evidence for preservation of statistical learning 
only when task performance could be supported by the implicit 
expression of knowledge (through reaction times) or by a coarse, 
gist-based familiarity signal (through a forced-choice recog
nition-memory task). In contrast, the explicit retrieval of high-resolution 
statistical representations was found to be impaired. Against this back
ground, dependencies between pattern separation and statistical 
learning may emerge specifically under conditions that share 
high-precision explicit retrieval demands. 

The goal of the current study was to further test whether pattern 
separation and statistical learning are dissociable processes within the 
brain. To this end, we focused on age as a naturally-occurring between- 
subjects manipulation to compare the behavioral expressions of these 
two processes in healthy individuals, using highly similar stimulus ma
terials across tasks and probing knowledge of statistical regularities in 
multiple test formats. Based on the proposed computational model 
(Schapiro et al., 2017), we hypothesized that healthy aging would 
differentially impact pattern separation and statistical learning, with 
greater age-related effects for pattern separation compared to statistical 
learning as expressed under conditions that do not require explicit ac
cess to high-precision knowledge. The rationale for this hypothesis is 
outlined further below, as we next review what is currently known about 
aging effects within each of these domains. 

2. Effects of aging on pattern separation and statistical learning 

Pattern separation has often been studied in humans using the 
Mnemonic Similarity Task (MST; Stark, Yassa, Lacy, & Stark, 2013; 
Stark, Stevenson, Wu, Rutledge, & Stark, 2015). A typical MST begins 
with incidental encoding of a list of visual objects, followed by a 
recognition phase in which participants classify studied items, percep
tually similar lures, and novel foils as “old”, “similar”, or “new”. The 
ability to successfully differentiate old items from similar lures has been 
consistently associated with the dentate gyrus and CA3 (Baker et al., 
2016; Bakker, Kirwan, Miller, & Stark, 2008; Lacy, Yassa, Stark, Muft
uler, & Stark, 2011; Yassa et al., 2010), supporting the use of the MST as 
a reliable behavioral index of pattern separation. A number of studies 

using the visual MST have found that, relative to younger adults, older 
adults frequently report similar lures as previously seen, indicative of a 
deficit in pattern separation (Kirwan & Stark, 2007; Yassa, Lacy et al., 
2011). This age-related deficit has been documented across multiple 
task formats, including versions of the MST that have separate study and 
test phases or a continuous task design and versions with three-choice 
(“old”, “similar”, “new) or two-choice response formats (“old”, “new”; 
Stark et al., 2015). In addition, age effects have been reported across 
various types of visual stimuli such as objects and scenes (Stark & Stark, 
2017), emotional stimuli (Leal & Yassa, 2014), and written words (Ly, 
Murray, & Yassa, 2013). 

While pattern separation is typically studied in the visual modality, 
statistical learning was first investigated in the context of speech seg
mentation (Saffran et al., 1996), and continues to be most frequently 
studied using auditory linguistic stimuli (although statistical learning 
studies in the visual domain are also becoming increasingly common, e. 
g., Kirkham, Slemmer, & Johnson, 2002; Turk-Browne, Jungé, & Scholl, 
2005). In a typical linguistic statistical learning task in adults, partici
pants are initially exposed to a continuous speech stream consisting of 
repeating trisyllabic “words” (e.g., “babupupatubitutibu…”; Saffran 
et al., 1996). Participants are then asked to explicitly discriminate be
tween “words” and foils, composed of recombined syllables from the 
stream. Above-chance performance on this forced-choice recognition 
test has been the standard way to indicate the occurrence of statistical 
learning. Critically, recent studies have provided evidence that the 
knowledge of the learned regularities acquired through statistical 
learning can be expressed both implicitly and explicitly (Arciuli, 2017; 
Batterink, Reber, Neville, & Paller, 2015; Bertels, Franco, & Destre
becqz, 2012), such that the typical, explicit forced-choice recognition 
task may not adequately capture all aspects of statistical learning. To 
address this issue, many studies have also employed implicit measures of 
the knowledge gained through statistical learning that do not require 
explicit, intentional retrieval of the learned statistical regularities. One 
such measure is the target detection task, which measures participants’ 
reaction time as they respond to a target syllable in a continuous speech 
stream (Batterink et al., 2015; Kim, Seitz, Feenstra, & Shams, 2009; 
Siegelman, Bogaerts, & Frost, 2017). Faster reaction time to the more 
predictable syllables (i.e., the second or third syllable in a triplet) is 
taken as evidence of statistical learning. 

Statistical learning has been demonstrated to occur robustly from 
infancy to young adulthood (e.g., Raviv & Arnon, 2017; Saffran et al., 
1996; Saffran, Newport, Aslin, Tunick, & Barrueco, 1997; Teinonen, 
Fellman, Näätänen, Alku, & Huotilainen, 2009). However, compared to 
pattern separation, studies on statistical learning in the healthy aging 
population are scarce, and the existing literature provides more mixed 
findings. For example, older adults performed similarly to younger 
adults on a reaction time-based measure of statistical learning in the 
visual modality (Campbell, Zimerman, Healey, Lee, & Hasher, 2012; 
Ong & Chan, 2019) and on forced-choice recognition tasks for trisyllabic 
words (Shaqiri, Danckert, Burnett, & Anderson, 2018). In contrast, other 
studies with forced-choice recognition tasks have observed poorer sta
tistical learning in older adults in both auditory and visual modalities 
(Palmer, Hutson, & Mattys, 2018; Schevenels, Altvater-Mackensen, 
Zink, De Smedt, & Vandermosten, 2021). Similarly, using a novel 
continuous statistical learning paradigm, Herff, Zhen, Yu, and Agres 
(2020) observed differences in learning trajectories between older and 
younger adults. As a possible explanation for the observed age differ
ences, Palmer et al. (2018) suggested that statistical learning, while 
relying on an implicit component that operates automatically, can be 
further boosted by an explicit component, which relies on working 
memory and is subject to age-related decline. An additional, not mutu
ally exclusive possibility is that age differences arise due to other task 
demands related to how learning is measured, rather than in the ability 
to extract statistical regularities itself. Explicit, direct measures of 
learning inherently rely on peripheral processes such as explicit memory 
retrieval (e.g., Christiansen, 2019), which are themselves susceptible to 
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aging (Korkki, Richter, Jeyarathnarajah, & Simons, 2020) and may in
fluence the assessment of the impact of aging on statistical learning. 
Given that previous aging studies of statistical learning have mostly 
relied on explicit measures of learning, it remains a possibility that 
implicit expression of statistical learning is preserved. 

Whether aging affects other types of memory that involve incidental 
learning of regularities over time has been inconsistent. For example, 
motor sequence learning, measured as a decrease in reaction time over 
time to a structured sequence of key presses, has been reported to be age- 
resistant (Gaillard, Destrebecqz, Michiels, & Cleeremans, 2009; Sche
venels et al., 2021), but age-related deficits emerge when sequence 
structure becomes more complex (Howard & Howard, 2013; Janacsek, 
Fiser, & Nemeth, 2012) or when behavioral expression of learning is 
probed with a confidence rating-based recognition task (Gaillard et al., 
2009). Similarly, in artificial grammar learning, older adults have 
demonstrated preserved abilities to differentiate grammatical from un
grammatical sentences in some studies (Neger, Rietveld, & Janse, 2015) 
but not in others (Lukács & Kemény, 2015; Neger, Rietveld, & Janse, 
2014). Importantly, using multiple measures of learning, one study 
observed age-related declines in motor sequence learning on tasks 
requiring explicit judgments, along with intact performance on implicit 
measures (Gaillard et al., 2009). This latter finding suggests that implicit 
behavioral expression of statistical learning may be relatively resistant 
to age-related decline. It also highlights the importance of using both 
implicit and explicit measures to understand the effect of aging on sta
tistical learning. 

3. The current study 

In the current study, we investigated pattern separation and statis
tical learning in older and younger adults, to test whether they are 
distinct computational processes with dissociable effects on behavior. 
Our primary hypothesis was that pattern separation and the implicit 
expression of statistical learning are dissociable. A related, secondary 
hypothesis was that participants’ ability to explicitly retrieve precise 
representations of their statistical knowledge would be related to their 
pattern separation abilities. To test these dissociations and associations, 
we focused on effects of aging. 

One challenge involved in directly comparing these two processes is 
that they have typically been studied using entirely different paradigms 
and stimulus materials. While statistical learning tasks often use audi
tory linguistic stimuli, pattern separation is usually assessed with visual 
stimuli, such as common objects, scenes, and abstract pictures. To 
address this challenge, we employed a novel auditory-linguistic version 
of the widely employed Mnemonic Similarity Task that measures par
ticipants’ ability to discriminate spoken nonsense trisyllabic words, 
which ensured that the learning materials for the pattern separation and 
statistical learning tasks were highly similar. Furthermore, we used 
three separate measures of statistical learning to fully capture both 
implicit and explicit expressions of knowledge accrued during learning: 
(1) an explicit rating task, in which participants rated their familiarity 
with the original “words” and two types of foil items (highly similar 
“partwords” and less similar “nonwords”) presented in isolation; (2) the 
explicit standard forced-choice recognition task, which requires 
discrimination of the learned items from nonword foils presented in 
direct opposition; (3) the implicit target detection task, which requires 
participants to make speeded responses to embedded syllables within 
continuous speech streams. While the rating task and recognition task 
both require participants to make conscious reference to previously 
learned information, the target detection task does not require conscious 
or intentional retrieval but probes statistical learning indirectly based on 
response times. Notably, these three tasks also differ in their reliance on 
pattern separation. While performance on the rating task relies on the 
ability to maintain highly precise representations of words in long-term 
memory, the 2AFC task can be solved by comparing gist-based famil
iarity for target words and novel nonwords (Bastin & Van der Linden, 

2003; Holdstock et al., 2002), in the absence of highly precise knowl
edge for the words. Finally, the target detection task is sensitive to 
participants’ ability to predict syllables within a word, and facilitation 
on this task also does not require a high precision memory trace. 

With these task characteristics in mind, we predicted that older 
adults would show specific deficits in distinguishing old versus highly 
similar items on both the MST and on the explicit rating measure of 
statistical learning, and that performance on these two tasks would be 
correlated across participants. In contrast, we expected that perfor
mance on the implicit, reaction time-based statistical learning task and 
on the forced-choice recognition measure would be preserved across 
age, given their relative independence on pattern separation 
mechanisms. 

4. Methods 

4.1. Participants 

A total of 94 younger adults and 137 older adults were recruited 
anonymously via Prolific.co, a crowdsourcing platform for recruiting 
and managing participants for online studies. Participants between ages 
18 and 30 were recruited as younger adults and participants between 
ages 60 and 89 were recruited as older adults. All participants were 
required to be native English speakers (though not necessarily mono
lingual), to have no hearing difficulties, and to have no history of 
neurological or psychiatric disorders (all determined via self-report). 
Informed consent was obtained from all participants in compliance 
with the Research Ethics Board of the University of Western Ontario. 

Participants were excluded from the final analysis for failing to 
complete the study (n = 28), for failing the attention check during the 
statistical learning task (n = 3), for failing the headphone check (n = 5), 
or for scoring below the normal hearing threshold on the hearing 
assessment (n = 73; 14 younger adults, 59 older adults). Participants 
whose performance score on either the MST or the statistical learning 
tasks was above or below the overall mean of their respective age by 
more than two standard deviations were considered outliers and 
removed from the final sample. Four younger adults and five older 
adults were excluded based on this criterion. After exclusions, the final 
sample consisted of 59 younger adults between ages 18 and 30 (38 fe
males and 21 males, average age = 21.9, average years of education =
14.3) and 61 older adults between ages 60 and 86 (41 females and 20 
males, average age = 64.7, average years of education = 15.0). The two 
groups did not significantly differ in the years of education completed (t 
(108) = 1.64, p = .10). We aimed to obtain a sample size of approxi
mately 60 participants per group after exclusions, which represents a 
larger sample size than most previous aging studies in the fields of sta
tistical learning and pattern separation (e.g., Campbell et al., 2012: n =
24 per group; Ong & Chan, 2019: n = 20 per group; Palmer et al., 2018: 
n = 24 per group; Stark & Stark, 2017: n = 26–28 per group). 

4.2. Stimuli 

4.2.1. Word mnemonic similarity task 
The stimuli for this task consisted of a set of 25 unique trisyllabic 

nonsense words (e.g., golapu), created from 75 unique syllables. These 
25 words were presented in the task as “First presentation” items. Of this 
set, five words were each repeated 10 additional times to create 
“Repeat” items and another five words were used to create an additional 
25 similar “Lure” words by recombining the syllables in each word in 
five different ways (e.g., gopula: golapu, lagopu, lapugo, pugola, pulago). 
The remaining 15 First presentation items served as foils and were never 
repeated. Thus, in total, there were 25 First presentation trials, 25 Lure 
trials, and 50 Repeat trials, resulting in a total of 100 trials (Fig. 1). 

To ensure that each trisyllabic word item was as distinct as possible, 
the three syllables within each word were created by randomly pairing 
three different consonants with three different vowels, with the 
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constraint that the syllables used in Lure and Repeat items were never 
used in another word. 

To create the auditory stimuli for this task, Microsoft Word’s “Read 
Aloud” function was used to produce individual syllables which were 
recorded and combined into words with Audacity. Each word was 1 s in 
duration (range: 0.95 s – 1.16 s) and the perceived loudness was 
normalized using Audacity to 12 LUFS (Loudness Unit relative to Full 
Scale) across all sound files. 

4.2.2. Statistical learning 
The stimuli for the statistical learning tasks consisted of 12 unique 

syllables, taken from Batterink and Paller (2019), which were combined 
to form four trisyllabic nonsense words (tafuko, regeme, rupuni, fetisu; see 
Fig. 2). Of the 12 syllables, six (ge, pu, fu, ti, su, fe) also appeared in the 
words used in the MST, although a different voice was used to generate 
the syllables for this task. To control for potential syllable-specific 

effects, the syllables in a given word were each assigned to the first, 
second, and third position across three counterbalance conditions (e.g., 
tafuko, fukota, kotafu). Participants were randomly assigned to one of the 
three conditions at the beginning of the task. The sound file for each 
syllable was 300 ms in duration. 

4.2.2.1. Stimuli for exposure phase. To create the continuous speech 
streams used in the initial Exposure Phase, each word was concatenated 
in pseudorandom order with the constraint that the same word never 
appeared consecutively, at a rate of 380 ms per syllable. Each word was 
repeated a total of 90 times, resulting in a 6.84 min long continuous 
stream. 

4.2.2.2. Stimuli for the target detection task. A total of 36 speech streams 
were created. Each stream consisted of a total of 48 syllables (16 words), 

Fig. 1. Diagram of Word Mnemonic Similarity Task. Of the initial 25 unique word items (orange), five were used to create 50 Repeat trials (green) and another five 
were used to create 25 Lure trials (blue). Participants were instructed to respond “Old” to repeated items and “New” to items that were presented for the first time 
even if similar in sound to previously encountered items. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 

Fig. 2. Diagram of statistical learning tasks. Following a 6 min exposure phase, participants underwent 1) Target Detection task, 2) Rating task, and 3) 2AFC 
Recognition task. Partwords used in Rating task were created by combining two syllables from one word and one syllable from another word. Nonwords used in 
Rating and 2AFC Recognition tasks consisted of syllables from three different words. 
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concatenated together in the same manner as in the Exposure Phase and 
presented at the same rate. Each speech stream was approximately 18 s 
long. 

4.2.2.3. Stimuli for the explicit SL tasks. The stimuli for the Rating Task 
consisted of 12 trisyllabic items: four Words from the Exposure Phase, 
four similar Partwords that contained two syllables from the same word 
and one syllable from another word (1. rege + ko, 2. feti + me, 3. ta +
puni, 4. ru + tisu), and four Nonwords that contained syllables from 
three different words (1. pu + ge + ti, 2. ni + su + ta, 3. fu + ru + me, 4. 
ko + re + fe). None of the Partwords appeared across word boundaries 
during the exposure phase. Both Partwords and Nonwords were used to 
probe participants’ recognition of the specific syllable combinations that 
occurred in the Exposure Phase. The same four Words and four Non
words were used as the stimuli for the 2AFC Recognition Task. 

4.3. Experimental tasks 

4.3.1. Word MST 
This task required participants to make “Old” and “New” recognition 

judgments to items presented in a continuous stream without a separate 
study phase (see Figure 1). It was modeled after the continuous version 
of the Mnemonic Similarity Task (Stark et al., 2015; Yassa et al., 2010). 
It should be noted that while the overt encoding on this continuous 
version differs from the typical MST with a separate incidental encoding 
phase, this difference does not affect the nature of the task. Each trial 
began with a 1.5 s pause followed by the auditory presentation of a word 
item along with a prompt on the screen (“New or Old?”) and ended when 
participants made a keyboard response. Participants were instructed to 
label a word as “Old” if the word had been presented before or “New” if 
the word had never been presented before. They were also specifically 
instructed that some of the words would sound similar to one another, 
but that similar-sounding words should also be labelled as “New” if they 
had not been previously presented in exactly that form. Before the task 
started, participants underwent five practice trials during which they 
were given feedback on whether their responses were correct or incor
rect. Participants were explicitly informed that the items used for the 
practice trials would not appear in the main task. During the main task, 
the items were presented in such a manner that each Repeat or Lure item 
was separated by an average of six intervening items (range = 2–12 
items; Fig. 1). To control for potential item order effects, six counter
balance conditions were created and each participant was randomly 
assigned to one of the six conditions. 

4.3.2. SL 

4.3.2.1. Exposure phase. Participants listened to a 6.84-min speech 
stream, which was divided into three 2.28-min blocks. At the end of each 
block, participants were asked to guess the total number of unique syl
lables used in the speech stream and were then given an optional break 
(maximum 30 s). While listening, participants also performed a cover 
task in which they responded to pauses within the speech with a key
press. A total of 18 short pauses were inserted into the speech stream and 
the number of hits to the pauses were used to confirm that participants 
were continuously listening to the stream. The timing of the pauses was 
pseudo-random with the constraint that they always occurred after the 
second syllable in a word, so as not to indicate word boundaries. Those 
who missed more than one pause were excluded from the final sample 
(n = 3). 

4.3.2.2. Target detection task. After the Exposure Phase, participants 
completed the target detection task, designed to assess participants’ 
implicit knowledge of the statistics of the speech stream. This task re
quires participants to make speeded responses to target syllables 
embedded in short segments of the continuous speech stream. At the 

beginning of each trial, a written form of the target syllable (e.g., “ta”) 
was displayed on the screen while the auditory syllable was presented 
twice. The written form of the syllable then remained on the screen 
while the short speech stream was presented. Participants were required 
to make a keypress each time they detected the target syllable. Both 
speed and accuracy were emphasized. Each stream consisted of all four 
words in the language presented four times each, concatenated in the 
same manner as the original exposure speech stream but with the 
constraint that the word containing the target syllable never appeared as 
the first or the last word in the stream. 

In order to examine possible learning effects during the target 
detection task itself, the task was subdivided into three blocks of 12 
streams, with each of the 12 syllables serving as the target syllable once 
per block. Within each block, the 12 syllables were ordered in such a 
way that the syllable positions of the targets (word-initial, word-middle, 
word-final) were evenly distributed across the block (e.g., initial, middle, 
final, middle, initial, final…). To monitor participants’ attention and 
engagement during the target detection task, a short-answer question 
that was irrelevant to the task (e.g., “What is your favorite color?”) was 
inserted at the end of each block and participants were required to type 
in their answers. 

Prior to starting the task, participants completed three practice trials. 
A different speech stream made up of three trisyllabic words was used 
for the practice. The words in the practice speech stream contained none 
of the 12 syllables in the exposure speech stream and were generated 
using a different speech synthesizer voice. At the end of each practice 
trial, participants were given their average response time and their total 
number of hits. 

4.3.2.3. Rating task. This task was designed to assess participants’ 
recognition of the words encountered during the Exposure Phase. On 
each trial, participants listened to a trisyllabic item and rated their fa
miliarity with the item on a scale of 1–4 (1 = least familiar). The task 
consisted of 12 trials (four Words, four Partwords, and four Nonwords), 
presented in a random order. 

4.3.2.4. Two-alternative forced-choice recognition task. This task served 
as an additional measure of participants’ explicit knowledge. On each 
trial, participants listened to a Word and Nonword pair, and selected the 
one that sounded more familiar to them. The numbers “1” and “2” 
appeared on the screen for1s before each item was presented, and par
ticipants responded with the number associated with the more familiar 
sounding item. The same four Nonwords used in the Rating task were 
paired in all possible combinations with the four Words, resulting in a 
total of 16 trials. The Word appeared as the first item in half of the trials, 
and trials were presented in random order. 

All participants completed the statistical learning tasks in the 
following order: Exposure phase, Target Detection task, Rating task, and 
2AFC task (see Figure 2). This order was chosen so that the participants 
could complete the Target Detection task prior to being exposed to the 
isolated triplets in the Rating and the 2AFC tasks, which could increase 
their explicit knowledge of the triplets. In addition, the Rating task was 
administered before the 2AFC because the 2AFC task provided addi
tional exposures to Words and Nonwords but not Partwords. All tasks 
were created using PsychoPy 2020.2.10 and were hosted and presented 
online via Pavlovia. 

4.4. Procedure 

The Word MST and the SL tasks were administered in two separate 
sessions, separated by approximately 24 h, in order to minimize task 
interference and fatigue caused by completing a prolonged online study. 
The Word MST took approximately 15 min, and the SL tasks took 
approximately 35 min to complete. The order of the two tasks was 
counterbalanced across participants by randomly assigning them to one 
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of the tasks in the first session. Twenty-four hours after completing the 
first session, participants were sent an invitation link through Prolific to 
sign up for the task that they were not assigned to in the first session. 
Participants were compensated through Prolific after completion of each 
session. Information on this two-session study structure was given to 
participants at the beginning of the first session. Those who completed 
the first session but did not return for the second session were removed 
from the final sample (n = 28). 

All tasks were performed online with the participants’ own laptops or 
personal computers. To minimize distractions during the study, partic
ipants were instructed to complete the tasks in a quiet listening envi
ronment and to use headphones or earphones for the entire duration of 
the session. Each session began with a volume adjustment task during 
which participants listened to music and adjusted their sound volume to 
a comfortable level. Participants then completed a headphone check 
task (Woods, Siegel, Traer, & McDermott, 2017). Individuals who failed 
on more than one trial on the headphone check task were removed from 
the final sample (n = 5). 

To ensure participants displayed normal hearing, this study also 
included an online hearing assessment. After completing the first ses
sion, participants were automatically directed to a Qualtrics survey 
containing demographic questions as well as instructions and a link to a 
hearing check website, SHOEBOX Online (shoeboxonline.com). SHOE
BOX Online is a web-based hearing assessment that has been validated 
for sensitivity to hearing losses against in-person hearing assessment 
(Reed et al., 2022). It consists of a questionnaire about one’s hearing 
experience and a pure tone audiometry test and uses the results to 
categorize ears into three categories, “Normal hearing”, “Loss”, and 
“Significant loss”. Those whose hearing thresholds at 1000, 2000, and 
4000 Hz were equal to or lower than 25 dB were considered to have 
normal hearing. Participants were instructed to return to the Qualtrics 
survey after completing the hearing assessment and select the category 
assigned to each of their ears from a drop-down menu. Of the initial 
sample of 231 people, 3 (1 younger adults, 2 older adults) reported 
“Significant loss” for both ears, 70 (13 younger adults, 57 older adults) 
reported “Loss” for at least one ear, and 142 (70 younger adults, 72 older 
adults) reported “Normal hearing” for both ears. Only those who 
completed the test and reported normal hearing in both ears were 
included in the final sample. 

4.5. Data analyses 

4.5.1. Word MST 
Participants’ response data were entered into a 2 × 3 mixed effects 

ANOVA with age group (young, old) as the between-subject factor and 
item condition (Repeat, Lure, First presentation) as the within-subject 
factor. Furthermore, d’ estimates derived from signal detection theory 
(z(Hit rate) – z(False Alarm rate)) were used to index memory 
discrimination while correcting for response bias (Stark et al., 2015; 
Leal, Tighe, & Yassa, 2014; Yassa et al., 2011). All response rates were 
transformed to z-scores for d’ calculations. Lure Discrimination (p 
(“New”|Lure) – p(“New”|Repeat)) was computed as the probability of 
correctly responding “New” to Lure items minus the tendency to falsely 
label a repeated item as “New”, and was used as the behavioral measure 
for pattern separation. Recognition (p(“New”|First presentation) – p 
(“New”|Repeat)) was computed as the probability of correctly 
responding “New” to First presentation items minus the tendency to 
falsely label a repeated item as “New”, and was used as the behavioral 
measure for item recognition. Response bias was indexed with c’ which 
is defined as criterion c (z(Hit rate) + z(False Alarm rate)/− 2) divided 
by discrimination (d’). A positive c’ indicates a general tendency for 
responding “Old” and a negative c’ indicates a general tendency for 
responding “New”. C′ was computed separately for Lure trials and First 
presentation trials. 

4.5.2. SL 

4.5.2.1. Target detection task. Responses made within 0–1200 ms of a 
target syllable onset were considered as “hits” and their RTs were used 
for analyses. All other responses were considered false alarms. RTs were 
entered into a mixed effects model with age group, syllable position 
(word-initial, word-middle, word-final), the position of the target within 
each stream (4–45), and stream number (1–36) as fixed effects and 
participants as a random effect. The position of the target within a 
stream and stream number were included as covariates to explore any 
learning that might have occurred within each stream (target position) 
and across streams (stream number) due to the additional exposure to 
the speech stream. Planned contrasts were used to test whether RTs 
decreased linearly as a function of syllable position. In addition, the 
effect of age and syllable position on RT was also assessed by a Bayesian 
mixed ANOVA. 

To quantify SL performance using a single metric while controlling 
for individual baseline response times, an “RT prediction score” was 
computed by subtracting the average RT for the final syllable position 
from the average RT for the initial syllable position and dividing it by the 
average RT for the initial syllable position (Batterink & Paller, 2019). An 
independent samples t-test was used to compare RT prediction scores 
between younger and older adults. An age-related difference in statis
tical learning would be revealed by a significant difference in RT pre
diction score between the two groups. 

4.5.2.2. Rating task. Average familiarity rating was computed for each 
word category (Word, Partword, Nonword) and was entered into a 2 × 3 
mixed effects ANOVA with age group as the between-subjects factor and 
word category as the within-subjects factor. Additionally, a “Word- 
Partword (W-PW) score” was computed by taking the difference be
tween the average ratings for Words and Partwords and a “Word- 
Nonword (W-NW) score” was computed by taking the difference be
tween the average ratings for Words and Nonwords. We also computed a 
“Partword-Nonword (PW-NW) score” by taking the difference between 
the average ratings for Partwords and Nonwords to examine whether 
there was a difference in response patterns to the two types of foil words 
between younger and older adults. 

4.5.2.3. 2AFC recognition task. An independent samples t-test was 
conducted to compare the average accuracy in younger and older adults 
across all trials. Since we hypothesized that there would be no difference 
in accuracy between the two age groups, a Bayesian analysis was also 
conducted to determine whether there was evidence supporting the lack 
of an age effect on accuracy. 

4.5.2.4. Correlational analysis. To examine the relationship between 
performance on different measures of statistical learning, we conducted 
exploratory correlational analyses between RT score, W-PW score, W- 
NW score, and accuracy on the 2AFC task while correcting for multiple 
comparisons using the Bonferroni procedure. 

4.5.3. Mediation analysis 
To examine whether the age effects on discrimination of similar 

words in the Word MST and the Rating task were related, a mediation 
analysis was conducted with W-PW score as the dependent variable, age 
as the independent variable, and Lure Discrimination as a possible 
mediator (Preacher & Hayes, 2008). Bootstrapping with 1000 replica
tions was used to calculate bias-corrected standard errors of the indirect 
paths. The same procedure was used to investigate the relationship be
tween age and W-NW score with Lure Discrimination as a possible 
mediator. 
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5. Results 

All variables were confirmed to meet the normality and homosce
dasticity assumptions of ANOVA with the Shapiro test and the Bartlett 
test. 

5.1. Word MST 

Accuracy rates differed as a function of item condition (F(2, 354) =
151.37, p < .001, η2 = 0.46), with accuracy being the highest for First 
presentation items and lowest for Lure items (Fig. 3a). On average, 
participants erroneously responded “Old” to 40.2% (OA: 42.5%, YA: 
37.8%) of Lures and 13.1% (OA: 16.5%, YA: 9.6%) of First presentation 
items. This is a pattern that is consistent with that reported in other 
studies that employed the MST in the visual modality (e.g., Baker et al., 
2016; Stark et al., 2015). Across all conditions, younger adults per
formed more accurately than older adults (F(1, 354) = 5.79, p = .017, η2 

= 0.02) but no age by condition interaction was identified (F(2, 354) =
0.20, p = .82). 

Critically, when signal-detection analyses were conducted using d’, 
there was a significant age effect on Lure Discrimination, such that 
younger adults showed greater sensitivity in discriminating similar Lure 
from Repeat items than older adults (t(118) = − 2.52, p = .013, d =
− 0.46). No age difference was found in Recognition discrimination 
scores between First presentation and Repeat items (t(118) = − 1.05, p =
.30; Fig. 3b). However, when d’ scores were entered into a mixed effects 
ANOVA with age and memory measure (Lure Discrimination, Recogni
tion) each as between- and within-subjects factors, there was not a sig
nificant interaction between age and memory measure (F(1, 118) =
0.13, p = .72, η2 < 0.001); instead older adults showed numerically 
lower scores on both measures as indicated by a marginal main effect of 
age (F(1, 118) = 3.45, p = .066, η2 = 0.03). It should be noted, however, 
that these ANOVA results need to be interpreted with caution as both 
Recognition and Lure Discrimination depend on participants’ false 
alarm rate on the Repeat trials and are thus not entirely independent. 

Both older and younger adults showed a tendency to respond “Old” 
to Lure trials (C′: OA = 0.35, YA = 0.30) and “New” to First presentation 
trials (C′: OA = − 0.10, YA = − 0.095). There was no significant differ
ence between the two groups in c’ for Lure trials (t(118) = 0.62, p = .53) 
or First presentation trials (t(118) = − 0.27, p = .78), suggesting that the 
observed age differences are at the level of discrimination rather than 
response criteria. 

5.2. Statistical learning 

5.2.1. Target detection task 
The average hit rate in the Target Detection task was 88.1% (YA =

87.6%, OA = 88.6%). Across both groups, RTs showed the expected 
decrease as a function of syllable position (F(2, 15,100) = 88.11, p <

.001, η2 = 0.32; linear effect: F(1, 15,101) = 173.13, p < .001). Inter
estingly, there was no interaction between age group and syllable po
sition (F(2, 15,100) = 0.048, p = .95), indicating that the effect of 
syllable position on RTs was not modulated by age group (Fig. 4a). This 
lack of an age-position interaction was also supported by a follow-up 
Bayesian mixed ANOVA indicating extreme evidence in favor of an 
absence of an interaction effect (BF10 = 614.5). There was also no age 
difference in the RT prediction scores (t(113) = 0.28, p = .78). 

Additionally, RTs also increased significantly both as a function of 
target position (F(1, 15,096) = 69.73, p < .001) and stream number (F(1, 
15,096) = 51.18, p < .001) such that RTs became slower toward later 
occurring targets within a stream as well as for later streams within the 
task. Both target position and stream number also significantly inter
acted with syllable position (F(2, 15,096) = 7.99, p < .001; F(2, 15,096) 
= 10.73, p < .001), such that the facilitation effect was stronger for later 
occurring targets and later trials. Age did not moderate the effect of 
target position (F(1, 15,096) = 0.88, p = .35) or stream (F(1, 15,096) =
0.55, p = .46), indicating that RTs increased for later targets and streams 
for both younger and older adults. The effects of block and stream po
sition on statistical learning are consistent with findings in previous 
studies (Batterink et al., 2015; Batterink & Paller, 2017), and could be 
due to a nonspecific effect of fatigue counteracted by the facilitation 
effect of statistical learning on latter syllables, or the greater cost 
incurred by the anticipation of the upcoming syllables on the initial 
syllable (Sherman & Turk-Browne, 2020; Turk-Browne, Scholl, Johnson, 
& Chun, 2010). 

5.2.2. Rating task 
Across both groups, familiarity ratings varied significantly by word 

category (F(2, 236) = 66.77, p < .001, η2 = 0.84), such that ratings were 
highest for previously encountered Words, followed by Partwords, and 
then Nonwords (Fig. 4b). This pattern is consistent with the results re
ported in prior statistical learning studies that employed the Rating task 
(Batterink & Paller, 2017, 2019). There was no main effect of age group 
(F(1, 118) = 2.32, p = .13). There was a marginally significant inter
action between word type and age group (F(2, 236) = 2.44, p = .089). 

We then tested for an age effect on W-PW scores and W-NW scores 
individually to probe for patterns reflected in the marginally significant 
interaction. There was a significant age effect in the W-PW scores (F(1, 
118) = 4.94, p = .028, η2 = 0.04), such that older adults showed reduced 
sensitivity to familiarity between Words and Partwords than younger 
adults. No age difference was found in the W-NW scores (F(1, 118) =
2.16, p = .14; Fig. 4c). When both W-PW and W-NW scores were 
analyzed with a mixed effects ANOVA with age and score type (W-PW, 
W-NW) each as between- and within-subject factors, there was a sig
nificant main effect of age with older adults scoring lower than younger 
adults (F(1, 118) = 4.27, p = .041, η2 = 0.03), but there was not an 
interaction between age and score type (F(1, 118) = 0.32, p = .57). The 
two groups also did not differ in the PW-NW scores (t(118) = 0.57, p =

Fig. 3. Average accuracy for each item type (a) and average Lure Discrimination and Recognition scores (b) on the MST. Error bars represent 95% confidence 
intervals. * = p < .05, *** = p < .001. 
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.57), suggesting that the lower W-PW scores for older adults were not 
due to an increased tendency for older adults to rate words as familiar. 

5.2.3. 2AFC recognition task 
The average performance accuracy was 72.8% for younger adults 

and 70.7% for older adults. Both scores were significantly above chance 
level (OA: t(60) = 12.26, p < .001; YA: t(58) = 11.67, p < .001; Fig. 4d). 
No difference was found between the two groups in performance accu
racy (t(118) = − 0.81, p = .42). Bayesian analysis also provided sub
stantial evidence in favor of the absence of an age effect (BF10 = 3.83). 

5.2.4. Correlational analysis 
Across age groups, performance on the target detection task was 

significantly correlated with accuracy on the 2AFC task (r(120) = 0.36, 
p < .001). This correlation remained significant when the two age 
groups were analyzed separately (YA: r(59) = 0.41, p < .001; OA: r(61) 
= 0.36, p < .001). There was not a significant correlation between RT 
score and the W-PW (r(120) = 0.16, p = .081) or the W-NW scores (r 
(120) = 0.17, p = .068) on the Rating task. 

5.3. Mediation analysis 

The finding that both Lure Discrimination and W-PW scores showed 
a significant age effect prompted us to further investigate the relation
ship between these variables. Compared to the W-NW score and the 
2AFC recognition task, the W-PW score relies more on high-precision 
representations of triplets from the stream and the ability to discrimi
nate them from partially overlapping triplets, which we expected to rely 
on those mechanisms of pattern separation that we found to be impaired 
with advanced age on the MST. Thus, we tested whether individual 

differences in Lure Discrimination significantly predicted W-PW using a 
linear regression model. The model revealed that Lure Discrimination 
significantly predicted W-PW score (F(1, 118) = 10.37, p = .002) and 
remained significant even after age group was added as a second pre
dictor (Beta = 0.34, t(118) = 2.78, p = .006). In contrast, age group did 
not predict W-PW scores in this latter combined regression model (Beta 
= 0.17, t(118) = 1.60, p = .11), suggesting a possible mediating role of 
Lure Discrimination between age group and W-PW scores that shows 
specificity for high-precision discrimination. We formally tested this 
idea with a mediation analysis which revealed a significant indirect ef
fect of age on W-PW score that was mediated by Lure Discrimination 
(Beta = 0.06, p = .024, tested with 1000 bootstrapping samples; Fig. 5), 
in addition to the direct effect of age on Lure Discrimination (Beta =
0.20, t(118) = 2.52, p = .013) and the direct effect of Lure Discrimi
nation on W-PW scores (Beta = 0.34, t(118) = 2.78, p = .006). A linear 
regression model also revealed a significant correlational relationship 

Fig. 4. Results of the statistical learning tasks. (a) Average reaction time as a function of syllable position on the Target Detection task. (b) Average familiarity rating 
for each condition on the Rating task. (c) Average rating difference between Words and Nonwords (W-NW) and between Words and Partwords (W-PW). (d) Average 
accuracy on the 2AFC Recognition task. Error bars represent 95% confidence intervals. * = p < .05, *** = p < .001. 

Fig. 5. Mediation model representing the effect of age on W-PW scores with 
Lure Discrimination as mediator. Path coefficients represent the beta co
efficients from multiple regression analyses. The parentheses represent the total 
(direct + indirect) effect of age on W-PW score. All reported beta coefficients 
are unstandardized regression coefficients. * = p < .05, ** = p < .01. 
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between Lure Discrimination and W-NW score (r(118) = 0.26, p =
.0047). However, as there was not a significant age effect on W-NW 
scores, no further mediation analysis was performed on W-NW scores. 

6. Discussion 

This study tested whether pattern separation and statistical learning 
are computationally separate processes by assessing the impact of 
healthy aging on these two processes. Using auditory linguistic versions 
of pattern separation and statistical learning tasks, we showed that 
pattern separation is impaired in aging, while performance on the re
action time-based and the forced-choice recognition measures of sta
tistical learning remains preserved. This finding supports our hypothesis 
that pattern separation and statistical learning are differentially affected 
by aging. However, this dissociation disappeared when statistical 
learning was probed with an explicit rating task of item familiarity. 
Older adults performed worse in differentiating learned triplets from foil 
triplets. Critically, the age effect in high-fidelity but not low-fidelity 
discrimination was significantly mediated by pattern separation, sug
gesting that the explicit expression of statistical learning at a high- 
precision level depends in part on those mechanisms of pattern sepa
ration that we show are affected by age-related decline. 

Aging impacted performance on the rating task but not the 2AFC 
recognition measure. From a perspective of explicit versus implicit 
retrieval demands, this result may be surprising at first glance, as both 
tasks require participants to make direct, explicit judgments about prior 
exposure of learned triplets. However, unlike the rating task, the 2AFC 
task can be supported by a comparison of relative familiarity between 
the two items on each trial, and has been shown to be more resistant to 
aging and age-related decline than explicit episodic recollection as 
probed in research on recognition memory (e.g., Bastin & Van der 
Linden, 2003; Holdstock et al., 2002). In contrast, the rating task re
quires retrieval of a high-resolution, precise memory representation of 
an isolated item, with such precise memory retrieval being compromised 
in aging (e.g., Korkki, Richter, Jeyarathnarajah, & Simons, 2020). The 
idea that task format is crucial for revealing aging effects is also sup
ported by several previous statistical learning studies. Relative to 
younger adults, older adults are impaired in rating words, partwords and 
nonwords presented in isolation (Fama, Schuler, Newport, & Turkel
taub, 2022), but often show preserved performance on 2AFC recognition 
tasks, even when partwords are included (Ong & Chan, 2019; Shaqiri 
et al., 2018; Palmer et al., 2018; though note the latter study found a 
marginal effect of age on word versus part-word trials driven by a high 
cognitive load condition). However, an exception is a recent study by 
Schevenels et al. (2021), who reported poorer performance in older 
adults on a 2AFC recognition task that included only nonwords as foils. 

In contrast, the implicit target detection task does not require 
engagement of declarative retrieval processes and memory-based deci
sion making but relies on reaction time facilitation instead. Faster re
action time to the later syllables in a triplet reflects successful prediction 
of syllable occurrence that results from the acquisition of associations 
between consecutively encountered syllables. Such associative priming 
effects can occur independently of explicit awareness and recognition 
(Batterink et al., 2015), and there is evidence these effects are main
tained into old age (Kan et al., 2011). Therefore, we conclude that older 
adults maintain the ability to discover and predict statistical regularities 
in input, but show a decline in the ability to encode, maintain and/or 
retrieve a high-fidelity memory representation of the learned statistical 
regularities. This task-specific demand could account for the observed 
age effect on the rating task. These findings support the recent view that 
statistical learning is a multi-component process (Arciuli, 2017; Con
way, 2020). These findings also suggest that studies that probe statistical 
learning only with a task that involves high-precision memory retrieval 
may underestimate older adults’ true statistical learning abilities. 

The mediation effect of pattern separation on the word-partword 
score in the rating task provides direct support that the observed age 

effect for high-fidelity discrimination is driven by variations in pattern 
separation abilities, rather than statistical learning per se. Pattern sep
aration mechanisms may contribute to the acquisition of the type of 
knowledge that can be expressed through the explicit rating task, 
potentially in parallel with the extraction of statistical regularities that 
are expressed implicitly. Alternatively, pattern separation mechanisms 
may be most critical at the time of retrieval, without playing a direct role 
in the learning process itself. We note that other higher-level cognitive 
processes such as working memory are also likely to contribute to the 
explicit expression of statistical learning (e.g., Palmer et al., 2018). 
Although the current data do not provide a mechanistic account of the 
interplay between these interacting processes, these initial set of find
ings open a window toward investigating these interconnections in 
aging and beyond. 

The observed dissociable effects of healthy aging on explicit versus 
implicit measures of statistical learning show parallels with existing 
literature outside of the linguistic statistical learning area. A study that 
used a target detection task to measure visual statistical learning re
ported preserved learning in older adults (Campbell et al., 2012). Dis
sociations between explicit and implicit measures have also been found 
in implicit learning studies that employed multiple measurements. Im
plicit learning of motor sequences and novel word-pairs were expressed 
equally across age on indirect measures of learning, but aging effects 
emerged when direct, recognition-based measures were used (Gaillard 
et al., 2009; Light, Singh, & Capps, 1986; Schevenels et al., 2021). Our 
results extend these findings by showing that similar dissociations also 
emerge in learning of statistical regularities in syllable sequences. 
Together, these studies provide converging evidence that statistical 
learning continues to be robust into late adulthood and that any age 
effect is likely due to additional cognitive demands inherent to the 
explicit tasks. 

The current findings also show parallels to the larger literature on 
age effects for memory about gist versus detail (see Brainerd & Reyna, 
2015; Devitt & Schacter, 2016; Grilli & Sheldon, 2022 for reviews). A 
significant body of experimental research on episodic memory has 
established that gist representations of prior experiences (such as in
formation about the superordinate categories to which previously 
studied items belonged; e.g., the list contained cats) tends to be well 
preserved among older adults. By contrast, information about specific 
details (e.g., the colour of the cats encountered) tends to be sensitive to 
aging. This dissociation has been particularly well documented in 
research on false memory conducted with visual recognition-memory 
paradigms, which has revealed that older adults frequently show false- 
alarm responses to novel items that are perceptually or conceptually 
similar to those that they previously studied (e.g., Koutstaal & Schacter, 
1997). That we observed an increased rate in false alarms to perceptu
ally similar lure items but not to dissimilar foil items on our MST con
verges with these findings and extends them to memory for speech 
material in the auditory domain. 

The greater impact of aging on pattern separation relative to statis
tical learning, when probed implicitly, can be interpreted with reference 
to their proposed underlying distinct neural substrates (Schapiro et al., 
2017). The decline of pattern separation in healthy aging has been 
associated with structural and functional changes in the dentate gyrus 
and CA3 hippocampal subregions. Studies using high resolution struc
tural neuroimaging observed greater volume reduction in the dentate 
gyrus compared to other hippocampal subfields in older adults (Bennett 
& Stark, 2016; Dillon et al., 2017; Malykhin, Huang, Hrybouski, & 
Olsen, 2017). Findings from diffusion-weighted imaging studies 
demonstrated reduced perforant pathway integrity in older adults 
(Yassa, Mattfeld, Stark, & Stark, 2011). Functional neuroimaging studies 
have also revealed a correlation between dentate gyrus and CA3 acti
vation and behavioral pattern separation performance (Reagh et al., 
2018; Yassa, Lacy, et al., 2011). Through mediation analysis, Dillon 
et al. (2017) revealed that dentate gyrus volume reduction specifically 
mediates impairment in behavioral pattern separation in older adults. 
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In contrast, statistical learning has been hypothesized to recruit a 
complementary mechanism that relies on CA1-dependent hippocampal 
circuitry (Schapiro et al., 2017). CA1 volume has been reported to 
remain relatively age-resistant (Dillon et al., 2017), although findings 
are not entirely consistent across studies (Kurth, Cherbuin, & Luders, 
2017). In addition, statistical learning is also associated with a network 
of brain regions outside of the hippocampus, which includes the inferior 
frontal gyrus, the striatum, and medial temporal cortex (Batterink & 
Paller, 2019; Frost, Armstrong, Siegelman, & Christiansen, 2015; Karuza 
et al., 2013; McNealy, Mazziotta, & Dapretto, 2006; Sandoval, Patter
son, Dai, Vance, & Plante, 2017; Schapiro, Kustner, & Turk-Browne, 
2012; Turk-Browne, Scholl, Chun, & Johnson, 2009). However, the 
interplay between these regions as a function of aging is not well un
derstood. Studies on motor sequence learning point to a compensatory 
relationship between the striatum and the medial temporal lobe in aging 
(Rieckmann & Bäckman, 2009). Whether this relationship generalizes to 
statistical learning is currently unclear and deserves further investiga
tion in future research. A direct examination of differences in the reli
ance on the dentate gyrus relative to the CA1 is another important 
avenue that could provide support for the account of the dissociation 
between pattern separation and statistical learning we suggest in the 
current study. 

To ensure consistency in the stimulus materials used to assess pattern 
separation and statistical learning, we developed a novel, auditory lin
guistic version of the continuous MST (Yassa et al., 2010). To our 
knowledge, only a few studies have investigated pattern separation in 
the auditory domain (Bjornn, 2018; Herman, Baker, Cazes, Alain, & 
Rosenbaum, 2020; Trier, Lacy, & Marsh, 2016; Wang et al., 2023), and 
none has investigated effects of healthy aging on auditory pattern sep
aration. The current findings provide evidence that the widely- 
documented age-related decline in pattern separation is not restricted 
to the visual domain but also extends into the auditory modality. Our 
novel paradigm may pave the way for future studies of pattern separa
tion of auditory stimuli in aging and in other populations. 

There are several limitations to this study. First, while statistical 
learning was measured with both implicit and explicit measures to ac
count for possible effects of the variability in explicit memory retrieval 
on the expression of statistical learning, pattern separation was only 
measured with an explicit recognition task. As such, there remains a 
possibility that the observed age-related deficits in pattern separation 
are due to task-specific demands for explicit cognitive processing, and 
that the implicit expression of pattern separation would be preserved in 
older adults. Although implicit measures have rarely been used by 
previous pattern separation studies, such measures may be developed in 
the future by adapting methodologies commonly used in the implicit 
memory literature, such as priming. Such implicit pattern separation 
measures may further elucidate the impact of aging on pattern separa
tion and its relationship with statistical learning. A second related lim
itation is that the current design does not allow us to fully disentangle 
the effects of precision of representation and explicit versus implicit 
access to these representations. The 2AFC task used in the current work 
involves explicit retrieval but requires only coarse knowledge. Future 
work could tease apart these contributions using more complex designs 
that orthogonalize these factors, such as by using a 2AFC task that in
corporates both partwords and nonwords. Third, the current study 
provides limited evidence on the underlying neural mechanism of the 
two computational processes. Future research with neuroimaging is 
warranted to examine whether the observed dissociation between 
pattern separation and the implicit expression of statistical learning 
arises from the difference in their underlying neural architectures, as 
hypothesized by Schapiro et al. (2017). Lastly, while the mediation 
analysis in the current study provides an interesting exploration of the 
relationship between pattern separation and the explicit expression of 
statistical learning, its results should be interpreted with caution as it 
was conducted on cross-sectional data (O’Laughlin, Martin, & Ferrer, 
2018; Raz & Lindenberger, 2011). Future research using a well-powered 

single sample with a continuous, wide age distribution may shed more 
light on the potential dependency between the two processes. 

In conclusion, our findings provide behavioral evidence that pattern 
separation and statistical learning are distinct computational processes 
that are differentially impacted by healthy aging. This dissociation 
emerges most clearly when the behavioral expression of statistical 
learning is probed implicitly. Future research can build on the current 
findings and address the observed aging effect on these two processes in 
direct relation to changes in their neural substrates, using structural 
and/or functional imaging. Our results also reveal age-related dissoci
ations within statistical learning, with older adults showing intact per
formance on implicit and forced-choice recognition-based measures of 
learning, along with poorer performance on an explicit memory task 
that requires access to highly precise triplet representations. This effect 
is at least partially mediated by task-specific demands for high precision 
memory that build on pattern separation and that decline with age. In 
contrast to explicit pattern separation mechanisms, our results suggest 
that the ability to acquire implicit knowledge during statistical learning 
is not affected by aging. 
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